Как найти коэффициент трения скольжения

Содержание
  1. Формула определения коэффициента трения скольжения
  2. Краткое описание
  3. Сила трения скольжения
  4. Правила расчёта
  5. Измерительные манипуляции
  6. Основные характеристики
  7. Практическое значение
  8. Ключевые нюансы
  9. Сила трения: определение, формулы
  10. Определение силы трения
  11. Виды силы трения
  12. Как найти силу трения?
  13. Формула силы трения
  14. Рекомендованная литература и полезные ссылки
  15. Сила трения, видео
  16. Как найти коэффициент трения
  17. Через силу трения и массу
  18. Через угол наклона
  19. Таблица коэффициентов трения скольжения для разных пар материалов
  20. Сила трения: определение, формулы и примеры простыми словами
  21. В чём измеряется сила трения
  22. Как измерить силу трения
  23. Сила трения скольжения – определение и формула
  24. Сила трения покоя – определение и формула
  25. Сила трения качения – определение и формула
  26. Каковы причины возникновения силы трения (качения и скольжения)
  27. Модуль силы трения, формула
  28. Может ли сила трения быть движущей силой
  29. Задачи на силу трения
  30. Примеры силы трения в природе
  31. Коэффициент трения скольжения – формула, минимальное значение — Помощник для школьников Спринт-Олимпиады
  32. Расчет коэффициента трения скольжения
  33. Что мы узнали?
  34. Сила трения — виды, формула и примеры расчета
  35. Определение и природа силы трения
  36. Виды силы трения
  37. Как найти силу трения
  38. Пример решения задачи

Формула определения коэффициента трения скольжения

Как найти коэффициент трения скольжения

Процесс взаимодействия тел при их относительном движении можно отобразить с помощью формулы трения скольжения. Коэффициент определяется только путём проведённых исследований.

Изучением процессов трения занимается раздел физики, который называется трибологией (механикой фрикционного взаимодействия).

Определяемый коэффициент является совокупной характеристикой пары материалов, которые не зависят от площади соприкосновения тел.

Краткое описание

Трение можно рассматривать как способ взаимодействия двух объектов. Но у этого процесса есть свои нюансы. Между двумя объектами трение возникает только в результате их соприкосновения с определённой площадью поверхности. Этот процесс попадает под действие третьего закона Ньютона.

Например, если взять 2 небольших бруска из дерева и просто их передвигать, то в итоге можно наблюдать соприкосновение по площадям. Во время эксперимента можно заметить, что двигать предметами относительно друг друга гораздо сложнее, нежели совершать с ними какие-либо манипуляции в воздухе. Именно в этом случае в действие вступает закон трения.

В третьем законе Ньютона описано правило, которое касается того, что по модулю силы равны, но направлены совершенно в разные стороны. Получается, что сила μ является векторной величиной. Этот процесс имеет электромагнитную природу.

Трение возникает в результате того, что молекулы и атомы тел, участвующих в соприкосновении, начинают взаимодействовать друг с другом. На этом правиле основано много задач по физике.

Латинской буквой k или греческой μ обозначается коэффициент трения.

Сила трения скольжения

Коэффициент трения скольжения показывает отношение μ к силе давления на поверхность. Это правило изучают на уроках физики в 10 классе. Силы трения всегда воздействуют на объекты. Они возникают в результате соприкосновения твёрдых тел, газов и жидкостей, подчиняются закону Ньютона.

Для решения сложных задач нужно понимать, что направление силы трения противоположно движению объекта и факторам, которые стремятся изменить его положение. Исключений не предусмотрено. О процессе трения скольжения можно говорить только тогда, когда тело движется относительно другого объекта. Конечные результаты во многом зависят от следующих факторов:

  • скорости движения;
  • коэффициента трения скольжения (µ), от которого напрямую зависят свойства, а также состояние поверхностей соприкосновения;
  • силы нормальной реакции опоры (N→).

Итоговый коэффициент во многом зависит от свойств задействованного материала.

Например, чем шероховатее будет поверхность, тем больше станет значение μ. У скользких оснований коэффициент окажется минимальным. Трение во многом зависит от скорости, но этим значением часто пренебрегают, если речь не идет о точных измерениях. По этой причине показатель μ является постоянным.

Правила расчёта

С максимальной точностью силу трения скольжения можно определить с помощью формулы F = µ* N. Значение N рассчитывается как производное массы тела на ускорение свободного падения. Учитывается также косинус угла к поверхности: N = m * g * cosa. Формула коэффициента трения скольжения выглядит следующим образом: µ = F/N.

На уроках физики можно узнать, что для основного количества всех пар материалов коэффициент рассчитывается во время опытов. Значение находится в пределах от 0,1 до 0,5. В такой ситуации μ будет являться переменной величиной.

В физике используются специальные таблицы, в которых указаны переменные величины для каждого из материалов. Но эти данные являются актуальными только при соблюдении определённых условий. Если нужно получить максимально точный результат, тогда следует самостоятельно выполнить расчёты для конкретной ситуации.

Измерительные манипуляции

Динамометр используется для измерения реальных показателей механической силы. Этот прибор включает в себя силовой элемент (пружину) и отчётное звено (линейку). Принцип использования стандартного пружинного динамометра прост. На прибор воздействует сила, которая растягивает либо сжимает упругое звено. Полученное значение фиксируется при помощи измерительной части.

Чтобы правильно найти величину μ, которая передаётся на брусок в процессе его движения по конкретной поверхности, нужно постараться прикрепить к объекту динамометр. Необходимо потянуть устройство за пружину в горизонтальной плоскости.

Чтобы полученный результат не имел погрешностей, нужно следить за тем, чтобы прибор перемещался максимально равномерно и с постоянной скоростью.

На анализируемую величину будут действовать сразу 2 силы, одна из которых препятствует движению бруска, а вторая старается снизить вероятность деформации пружины. Так как движение динамометра равномерное, силы имеют одинаковое значение и уравновешивают друг друга. На измерительной шкале регистрируется показатель упругости пружины, из-за чего полученная величина и будет искомой цифрой.

Проведённый опыт может доказать, что итоговое значение μ во многом зависит от веса задействованного объекта. Если применить дополнительный груз и повторить исследование, тогда можно заметить, что значение на линейке увеличится.

Основные характеристики

Сила трения может рассматриваться как процесс, который возникает в результате соприкосновения двух объектов и препятствует их относительному движению.

Основными причинами трения являются специфическая шероховатость трущихся поверхностей и взаимодействие имеющихся молекул.

Существует определённый характер фрикционного взаимодействия, который принято делить на несколько категорий:

  1. Граничное. В области контакта содержатся участки и слои разной природы (например, жидкость, оксидные плёнки). Это самый распространённый случай, когда дело касается скольжения.
  2. Сухое. Взаимодействующие твёрдые тела не разделены между собой дополнительными слоями. На практике крайне редко фиксируются ситуации, которые свойственны сухому трению. Для этого случая характерно наличие большого значения μ в состоянии покоя.
  3. Жидкостное. Задействованные тела разделены слоем твёрдого тела (например, порошок графита), газом либо жидкостью. Эта ситуация чаще всего фиксируется при трении качения. Твёрдые тела погружены в жидкость, а величина μ отличается вязкой средой.
  4. Смешанное. Зона контакта содержит участки жидкостного и сухого трения.
  5. Вязкоупругое. Решающую роль играет внутреннее трение в смазывающем материале. Это фрикционное взаимодействие возникает при увеличении относительных скоростей перемещения.

Многочисленные исследования показали, что для многих пар материалов итоговое значение µ не превышает 1. В противном случае можно говорить, что между контактирующими телами присутствует сила адгезии.

Для решения элементарных задач используется следующая формула: µ = (F + F adhesion)/ N. Значение μ измеряется стандартным образом, никакие дополнительные буквы для обозначения полученного результата не используются (указываются только цифры).

Практическое значение

Трение играет отрицательную роль во многих механизмах, например, в транспортных средствах, двигателях внутреннего сгорания, зубчатых шестеренках.

Негативное значение сказывается на снижении коэффициента полезного действия механизма. Смазки, масла на синтетической и натуральной основе позволяют существенно уменьшить силу трения.

На многих широко распространённых деталях присутствует защитное напыление.

Если речь идет о миниатюризации МЭМС (микроэлектромеханических систем) и НЭМС (наноэлектромеханических систем), тогда показатель μ будет существенно увеличиваться. Для решения этих проблем используется усовершенствованный подход в рамках трибологии.

Благодаря трению объекты могут перемещаться. Например, при ходьбе неизбежным является сцепление стопы с полом, из-за чего человек отталкивается от поверхности и движется дальше.

Аналогичным образом происходит сцепление колёс транспортного средства с дорогой. Для повышения эксплуатационных характеристик автомобилей выпускаются инновационные формы и специальные разновидности резины для колёс.

На спортивные машины устанавливают универсальные антикрылья, которые прижимают транспортное средство к трассе.

Ключевые нюансы

Сила трения имеет место и при качении какого-либо тела. Но этим параметром часто пренебрегают, так как итоговые показатели недостаточно велики, чтобы брать их в расчёт. Такой подход позволяет упростить процесс решения различных задач. Но даже в этом случае можно сохранить высокую степень точности итогового результата.

Для закрепления полученных знаний можно изучить пример решения задачи по физике. На пол поставили ящик весом 7 кг. Между этим объектом и напольным покрытием значение μ составляет 0,3.

К ящику прикладывают силу, которая соответствует 14 Н. Нужно совершить необходимые расчёты, чтобы понять, можно ли сдвинуть объект с места.

Для определения силы реакции необходимо массу ящика умножить на ускорение:

  1. N = m * g.
  2. N = 10 кг * 9,8 м/с² = 98 кг * м/с² = 98 Н.
  3. F = k * N.
  4. F = 0,3 * 98 Н = 29,4 Н.

Полученный результат позволяет сделать вывод, что ящик останется на прежнем месте. Это связано с тем, что итоговое значение превышает усилия, приложенные к объекту: 29,4 Н > 14 Н.

Силы трения имеют большое значение в жизни людей и животных.

Благодаря этому явлению человек может ходить и держать в руках различные предметы. За счёт действия закона сцепления на скалах удерживаются огромные валуны и не падают в пропасть, а плетущиеся растения тянутся к солнечному свету и скрепляются с ближайшей опорой.

Люди и животные от природы умеют избавляться от негативного воздействия торможения. К примеру, всё тело рыбы покрыто специальной слизью, что позволяет существенно уменьшить трение о воду. Человек при работе с техникой научился использовать различные смазывающие материалы, благодаря чему увеличивается срок эксплуатации, а также качество работы устройства.

Источник: https://1001student.ru/fizika/formula-opredeleniya-koeffitsienta-treniya-skolzheniya.html

Сила трения: определение, формулы

Как найти коэффициент трения скольжения

  • Определение силы трения
  • Виды силы трения
  • Как найти силу трения?
  • Формула силы трения
  • Рекомендованная литература и полезные ссылки
  • Сила трения, видео
  • Сила трения возникает из соприкосновения поверхностей двух физических тел, пребывающих в движении по отношению друг к другу.

    Теория трения издревле волновала умы человечества, древние инженеры: строители Египетских пирамид, Стоунхенджа в Англии или таинственных каменных истуканов на острове Пасхе, все они (как впрочем, и их современные коллеги) решали насущную проблему, связанную с трением и тем как его максимально уменьшить.

    Ведь именно сила трения делает трудным перемещение тяжелых грузов по земле (тех же камней для пирамид или Стоунхенджа), и чтобы облегчить эту задачу, нашими далекими предками было придумано такое полезное изобретение как колесо и сделано множество других важных открытий.

    В нашей статье мы посмотрим на силу трения в физическом аспекте, разберем, как действует она на те или иные тела, какие есть ее виды и формулы расчета.

    Определение силы трения

    Что такое сила трения? Классическое определение звучит так: сила трения – это сила, появляющаяся при соприкосновении двух тел во время движения и препятствующая этому самому движению.

    Иными словами, чем больше сила трения между телами, тем труднее их двигать относительно друг друга.

    Что же касается самой физической природы трения, то оно появляется как результат взаимодействия между атомами и молекулами тел, соприкасающихся между собой.

    Также стоит заметить, что при трении двух тел на них действует третий закон Ньютона: сила трения, действующая на первое тело (тело А), равна силе трения, действующей на второе тело (тело Б), только по модулю эти силы имеют противоположное направление.

    На этой картинке, сила трения, действующая на холодильник, равна силе трения, действующей на пол, но направлены эти силы в противоположные стороны.

    Виды силы трения

    В зависимости от характера движения тел различают такие виды сил трения как:

    • Покоя. Сила трения покоя возникает при соприкосновении двух тел, которые, однако, не движутся относительно друг друга, и имеет нулевое значение.
    • Скольжения. Сила трения скольжения – наиболее классическая иллюстрация действия трения, возникает при скольжении тел относительно друг друга. На ее величину влияет масса тела (чем она больше, тем больше сила трения), характер поверхности (разумеется, при скольжении по льду сила трения будет в разы меньше чем при скольжении по земле).
    • Качения. Сила трения качения появляется, когда одно тело катится по поверхности другого, например, при езде на велосипеде или автомобиле. При качении сила трения гораздо меньше, чем при скольжении. Это опытным, эмпирическим путем установили еще те далекие наши предки, которые изобрели колесо – величайшее изобретение в истории науки и техники.
    • Верчения. Сила трения верчения проявляется при вращении одного тела по поверхности другого.

    Что же касается самого трения то и оно бывает нескольких видов:

    • Сухое – проявляется при соприкосновении твердых поверхностей.
    • Вязкое, также подобное трение называют жидкостным, появляется при соприкосновении твердого тела c жидкостью либо газом. Например, на корабль, плывущий по воде, как и на поверхность воды, действует вязкое (жидкостное) трение. Сила вязкого трения обычно гораздо меньше силы сухого трения.
    • Смешанное, возникает, когда между поверхностями, которые соприкасаются, есть слой смазки.

    Интересный факт: при осаде Константинополя в 1453 году турки, чтобы обойти специальную цепь, преграждающую путь турецким кораблям в залив Золотой Рог перетянули их по суше.

    А для того, чтобы уменьшить силу трения при перемещении больших тяжелых военных кораблей сделали настил из деревянных рельсов, который обильно смазали салом.

    Таким образом, благодаря смазке и смешанному трению, сила которого гораздо меньше, чем при трении сухом, турки удачно воплотили свой замысел, приведя защитников Константинополя в подлинное смятение.

    Султан Мехмед II наблюдает за перевозкой своих судов.

    Как видите, знание законов физики и механики не раз и не два находило свое практическое воплощение в реальной жизни.

    Но вернемся от истории снова к физике, трение также разделяют на внешнее и внутреннее. Внешнее трение характерно для взаимодействия исключительно твердых тел.

    Внутреннее трение характеризуется вязкостью и возникает при взаимодействии жидкостей или газов, а такое взаимодействие может происходить внутри условно одного тела.

    Например, в водах мирового океана есть разные течения, с более холодной или более теплой водой, при взаимодействии этих течений между ними и возникает внутреннее трение.

    Как найти силу трения?

    Чтобы рассчитать силу трения необходимо знать коэффициент трения k, который зависит от характера поверхности. Коэффициент трения – постоянная величина и его значение можно узнать из специальной таблицы.

    Помимо коэффициента трения необходимо знать силу реакцию опоры N, которая, по сути, равна силе тяжести (гравитации) зависящей от массы тела (m) и ускорения свободного падения. Ее формула будет иметь следующий вид:

    N = m * g

    Где m – масса тела, а g – ускорение свободного падения, это постоянная величина равная 9,8 м/с2.

    Формула силы трения

    Сила трения высчитывается путем произведения реакции опоры N и коэффициента трения k. Формула силы трения будет иметь следующий вид:

    Fтр = k * N.

    В некоторых формулах коэффициент трения k обозначается символом µ.

    Написанные выше расчеты справедливы в самом простом случае, когда тело лежит на строго горизонтальной поверхности.

    Если же движение происходит по наклонной плоскости, то расчеты силы трения несколько усложняются. На тело, как и раньше, действует сила гравитации и реакция опоры поверхности, но не в одном направлении.

    Таким образом, формула силы трения для тела, которое движется по наклонной поверхности, будет иметь следующий вид:

    Fтр = k * m * g * cosα.

    Где k – коэффициент трения, m – масса тела, g гравитационная постоянная (помним, что она равна 9,8 м/с2), cosα – отношение катета, прилежащего к углу, к гипотенузе треугольника (косинус).

    При определении силы трения на наклонных поверхностях ярко проявляется связь между физикой и геометрией.

    Рекомендованная литература и полезные ссылки

    • Сила трения. ЗФТШ, МФТИ. Дата обращения 14 февраля 2019.
    • Енохович А. С. Справочник по физике. — Просвещение, 1978. — С. 85. — 416 с.
    • Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 1. Трение в машинах. Теория, расчет и конструкция подшипников и подпятников скольжения. Машгиз. М.-Л. — 1947. 256 с.
    • Bowden F. P., Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001. Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.
    • Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer, 2009.
    • Rabinowicz E. Friction and Wear of Materials. Wiley-Interscience, 1995.

    Сила трения, видео

    И в завершении образовательное видео по теме нашей статьи.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/fizika/sila-treniya/

    Как найти коэффициент трения

    Как найти коэффициент трения скольжения

    Приводим 2 варианта нахождения коэффициента трения — зная силу трения и массу тела или зная угол наклона. Для обоих вариантов вы найдете удобные калькуляторы и формулы для расчета.

    Следует помнить, что коэффициент трения (μ) величина безразмерная, то есть не имеет единицы измерения.

    Коэффициент трения зависит от качества обработки трущихся поверхностей, скорости движения тел относительно друг друга и материала соприкасающихся поверхностей. В большинстве случаев коэффициент трения находится в пределах от 0,1 до 0,5 (см. таблицу).

    Через силу трения и массу

    {\mu= \dfrac{F_{тр}}{m g}}

    Формула для нахождения коэффициента трения по силе трения и массе тела:

    {\mu= \dfrac{F_{тр}}{m g}}, где μ — коэффициент трения, Fтр — сила трения, m — масса тела, g — ускорение свободного падения.

    Через угол наклона

    {\mu = tg(\alpha)}

    Формула для нахождения коэффициента трения по углу наклона поверхности:

    {\mu = tg(\alpha)}, где μ — коэффициент трения, α — угол наклона поверхности скольжения.

    Таблица коэффициентов трения скольжения для разных пар материалов

    Трущиеся материалы (при сухих поверхностях) Коэффициенты трения покоя при движении
    Резина по сухому асфальту0,95-1,00,5-0,8
    Резина по влажному асфальту0,25-0,75
    Алюминий по алюминию0,94
    Бронза по бронзе0,20
    Бронза по чугуну0,21
    Дерево по дереву (в среднем)0,650,33
    Дерево по камню0,46-0,60
    Дуб по дубу (вдоль волокон)0,620,48
    Дуб по дубу (перпендикулярно волокнам)0,540,34
    Железо по железу0,150,14
    Железо по чугуну0,190,18
    Железо по бронзе (слабая смазка)0,190,18
    Канат пеньковый по деревянному барабану0,40
    Канат пеньковый по железному барабану0,25
    Каучук по дереву0,800,55
    Каучук по металлу0,800,55
    Кирпич по кирпичу (гладко отшлифованные)0,5-0,7
    Колесо со стальным бандажем по рельсу0,16
    Лед по льду0,05-0,10,028
    Метал по аботекстолиту0,35-0,50
    Метал по дереву (в среднем)0,600,40
    Метал по камню (в среднем)0,42-0,50
    Метал по металу (в среднем)0,18-0,20
    Медь по чугуну0,27
    Олово по свинцу2,25
    Полозья деревянные по льду0,035
    Полозья обитые железом по льду0,02
    Резина (шина) по твердому грунту0,40-0,60
    Резина (шина) по чугуну0,830,8
    Ремень кожаный по деревянному шкиву0,500,30-0,50
    Ремень кожаный по чугунному шкиву0,30-0,500,56
    Сталь по железу0,19
    Сталь(коньки) по льду0,02-0,030,015
    Сталь по райбесту0,25-0,45
    Сталь по стали0,15-0,250,09 (ν = 3 м/с) 0,03 (ν = 27 м/с)
    Сталь по феродо0,25-0,45
    Точильный камень (мелкозернистый) по железу1
    Точильный камень (мелкозернистый) по стали0,94
    Точильный камень (мелкозернистый) по чугуну0,72
    Чугун по дубу0,650,30-0,50
    Чугун по райбесту0,25-0,45
    Чугун по стали0,330,13 (ν = 20 м/с)
    Чугун по феродо0,25-0,45
    Чугун по чугуну0,15

    Просмотров страницы: 40849

    Источник: https://mnogoformul.ru/kak-nayti-koyefficient-treniya

    Сила трения: определение, формулы и примеры простыми словами

    Как найти коэффициент трения скольжения

    В статье простым и доступным языком раскрывается понятие силы трения, причины её возникновения и роль в жизни людей и животных. Кроме этого, показаны примеры базовых задач и простейшие формулы, необходимые для решения.

    В чём измеряется сила трения

    В международной системе единиц (СИ) сила трения, как и любая другая, измеряется в ньютонах (Н), которые являются производными единицами и определяются как отношение килограмма (кг) на отношение метра (м) к секунде в квадрате (с2), то есть Н = кг / (м/с2).

    Интересный факт: до принятия СИ в 1960 году использовали абсолютную физическую систему единиц, и размерностью силы была дина. Так как 1 дин = 1 г / (см/с2), то дины и ньютоны отличаются на пять порядков, а именно: 1 дин = 10-5 Н.

    Как измерить силу трения

    Для измерения механической силы обычно используют динамометр – прибор, ключевыми частями которого являются силовой элемент (в основном пружина) и отчётное звено (например, линейка).

    Принцип действия примитивного пружинного динамометра прост: сила, действующая на прибор, сжимает или растягивает упругое звено (в зависимости от направления действия), а её величина регистрируется при помощи измерительной части.

    Для того чтобы узнать величину силы трения, передающейся на деревянный брусок при его движении по столу, нужно прикрепить к объекту динамометр и потянуть за пружину в горизонтальной плоскости.

    ВНИМАНИЕ: перемещать прибор нужно равномерно и с постоянной скоростью.

    Сила трения и сила упругости

    На исследуемую систему будут действовать две силы, одна из которых препятствует движению бруска (сила трения), а вторая противится деформации пружины (сила упругости).

    СПРАВКА: в данном случае сила тяжести не учитывается, так как её направление перпендикулярно рабочей плоскости.

    Вследствие того, что перемещение динамометра равномерное, силы уравновешивают друг друга и имеют одинаковое значение, а так как на измерительной шкале регистрируется сила упругости пружины, то указанная величина и есть искомая цифра.

    Подобным опытом можно так же доказать, что сила трения зависит от массы бруска. Установив дополнительный груз и осуществив повторное исследование, легко заметить, что значение на линейке увеличилось.

    Сила трения с грузом

    Сила трения скольжения – определение и формула

    Данное явление имеет место при относительном движении соприкасающихся тел, придавая при этом объекту с большей скоростью отрицательное ускорение и уменьшая быстроту его перемещения.

    Сила трения скольжения зависит от силы реакции области соприкосновения поверхностей, скорости смещения тел относительно друг друга и материалов контактирующих частей.

    ВНИМАНИЕ: площадь соприкосновения не влияет на исследуемую величину.

    Формула силы трения скольжения выражает прямо пропорциональную зависимость трения от нормальной реакции опоры N:

    Fтр = — μ∙N,

    где μ – коэффициент трения (иногда обозначается как k), зависит от материала и степени обработки поверхности контакта. Значения указанной величины найдены эмпирически, и полученные данные, в зависимости от природы контактирующих тел, сведены в таблицу.

    СПРАВКА: знак «минус» в формуле характеризует противонаправленность трения движению.

    Внешние приложенные к телу силы не влияют на трение скольжения, что можно наблюдать на графике:

    Здесь заштрихованная часть соответствует зоне силы трения покоя, величину которой необходимо превысить, чтобы предмет сдвинулся с места при воздействии на него внешних факторов. На графике отмечено, что максимальное значение трения покоя превышает силу трения скольжения, однако обычно их считают одинаковыми.

    Сила трения покоя – определение и формула

    Данное явление возникает между неподвижными, обязательно соприкасающимися объектами, препятствуя их относительному смещению.

    Примерами этой силы может послужить взаимодействие гвоздя и стены, в которую он забит, или концы завязанного шнурка. Благодаря покою (сцеплению), действующему на подошву обуви, люди ходят по дороге без проскальзывания, а машины не буксуют на сухом асфальте.

    Для того чтобы сдвинуть друг относительно друга два предмета, нужно преодолеть силу трения покоя, которую находят по формуле:

    Fтр = — k0∙N,

    где N – реакция опоры, k0 – коэффициент трения покоя.

    В 1779 французским физиком Кулоном была установлена зависимость, согласно которой, чем сильнее прижаты тела, тем сложнее преодолеть их сцепление.

    ВАЖНО: материал и обработка соприкасающихся поверхностей также влияют на возможность возникновения относительного движения.

    Сила трения качения – определение и формула

    Данное явление возникает, когда контактирующие тела перекатывают относительно друг друга или в случае качения одного предмета, называемого катком, по поверхности второго.

    ВНИМАНИЕ: величина рассматриваемой силы в несколько раз меньше скольжения, поэтому, например, тяжелые предметы проще переставить на поверхность с колёсами и только после этого передвигать.

    Обычно для приблизительного расчёта силы трения качения применяют следующую формулу:

    Fтр = k∙(N/r),

    где k – коэффициент трения качения, r – радиус катка.

    СПРАВКА: величина k, в отличие от других коэффициентов в данной теме, имеет размерность длины.

    Каковы причины возникновения силы трения (качения и скольжения)

    причина возникновения явлений, препятствующих перемещению тел, заключается в неоднородности и шероховатости контактирующих поверхностей. При движении объектов эти дефекты соприкасаются, что и приводит к эффекту торможения.

    Помимо этого, причиной трения является существование взаимодействия между молекулами и атомами двух граничащих тел, которое вызывает взаимное притяжение.

    Что касается процессов, снижающих скорость качения, то их появление также обуславливается природными деформациями поверхностей. Говоря простым языком, при движении катку требуется постоянно взбираться на небольшие горки, что приводит к замедлению.

    Модуль силы трения, формула

    Модуль любой величины – это всегда положительное число, следовательно модуль силы трения равен:

    |Fтр | = μ∙N,

    где μ – коэффициент трения, N – реакция опоры или области контакта.

    СПРАВКА: обычно рассчитывают модуль максимального воздействия, которое и показывает динамометр.

    Может ли сила трения быть движущей силой

    Несмотря на то что указанное явление обычно препятствует движению, в некоторых случаях силу трения можно считать движущей.

    Например, при рассмотрении пробуксовывающего колеса транспортного средства его скорость в точке касания к поверхности больше нуля.

    Поэтому сила трения, согласно своему свойству, будет действовать в направлении, обратном мгновенной скорости, что совпадёт с направлением скорости всего колеса. Следовательно, сила трения может являться движущей силой.

    Задачи на силу трения

    1. Для брусков, изображенных на рисунке, найти ускорения, учитывая, что нить, соединяющая их, нерастяжима.
    1. Выяснить, сдвинется ли ящик, если прикладывать к нему указанное воздействие.

    Примеры силы трения в природе

    Изучаемое явление имеет огромное влияние на жизнедеятельность людей и животных. Благодаря силе трения человек может ходить, удерживать в руках предметы, а звери зацепляться за ветки деревьев. Именно существование сцепления держит огромные валуны на скалах и не позволяет им упасть, а растения тянутся к солнечному свету, скрепляясь с близстоящей опорой.

    Кроме этого, и животные, и люди умеют избавляться от негативного воздействия торможения. Например, тела рыб покрыты слизью, чтобы уменьшить эффект трения о воду, а человек, особенно в технике, зачастую применяет различные смазывающие материалы.

    Источник: https://meanders.ru/chto-takoe-sila-treniya-v-fizike-opredelenie-formula-vidy.shtml

    Коэффициент трения скольжения – формула, минимальное значение — Помощник для школьников Спринт-Олимпиады

    Как найти коэффициент трения скольжения

    Физическая величина, характеризующая трущиеся поверхности, называется коэффициентом трения скольжения. Величина обозначается буквой μ. Коэффициент трения определяют опытным путём.

    Расчет коэффициента трения скольжения

    С достаточно большой точностью силу трения скольжения рассчитывают как предельную силу трения покоя по формуле:

    $F_{тр} = mu cdot N$.

    Тогда формула коэффициента трения скольжения:

    $mu ={{F_{тр}} over {N}}$

    Значение N рассчитывается как произведение массы тела на ускорение свободного падения и на косинус угла к поверхности приложения:

    $N = m cdot g cdot cos alpha$

    Рис. 3. Сила нормальной реакции опоры для тел, скатывающихся по наклонной поверхности.

    Для большинства пар материалов коэффициент рассчитан опытным путём. Значения находятся в пределах 0,1…0,5. Некоторые значения представлены в таблице.

    Трущиеся материалыКоэффициенты трения
    ПокояПри движении
    Алюминий по алюминию0,94
    Бронза по бронзе0,20
    Бронза по чугуну0,21
    Дерево по дереву0,650,33
    Дерево по камню0,46-0,60
    Дуб по дубу (вдоль волокон)0,620,48
    Дуб по дубу (перпендикулярно волокнам)0,540,34
    Железо по бронзе0,190,18
    Железо по железу0,150,14
    Железо по чугуну0,190,18
    Каучук по дереву0,800,55
    Каучук по металлу0,800,55
    Кирпич по кирпичу (гладко отшлифованные)0,5-0,7
    Лёд по льду0,028
    Медь по чугуну0,27
    Металл по дереву0,600,40
    Металл по камню0,42-0,50
    Металл по металлу0,18-0,20
    Олово по свинцу2,25
    Полозья деревянные по льду0,035
    Обитые железом полозья по льду0,02
    Резина (шина) по твёрдому грунту0,40-0,60
    Резина (шина) по чугуну0,830,8
    Сталь (коньки) по льду0,02-0,030,015
    Сталь по железу0,19
    Сталь по стали0,15-0,250,09 при 3 м/с, 0,03 при 27 м/с
    Чугун по дубу0,650,30-0,50
    Чугун по стали0,330,13
    Чугун по чугуну0,15

    Коэффициент трения – переменная величина. Поэтому значение коэффициента трения скольжения, приведённые в таблице, являются истинными только при соблюдении определённых условий, в которых были получены.

    Что мы узнали?

    Коэффициент трения скольжения – физическая величина, характеризующая трущиеся поверхности. Как найти: $mu = {{F_{тр}} over {N}}$. На практике коэффициент рассчитывается исходя из свойств материала эмпирическим путём.

    ПредыдущаяСледующая

    Источник: https://Sprint-Olympic.ru/uroki/fizika/18626-koefficient-treniia-skoljeniia-formyla-minimalnoe-znachenie.html

    Сила трения — виды, формула и примеры расчета

    Как найти коэффициент трения скольжения

    Сила трения появляется, когда две поверхности соприкасаются и движутся относительно друг друга. Процесс изучает физика, в частности механика. Она рассматривает основные законы, которым поддаются тела при их движении и взаимодействии, выясняет причины, влияющие на изменение положения предметов.

    Определение и природа силы трения

    Сила трения Fтр возникает при касании двух тел. Она создает препятствия для их дальнейшего движения. 

    Это происходит при взаимодействии атомов и молекул, из которых состоят предметы. Поэтому природа ее появления – электромагнитные волны. Она действует в двух направлениях, направлена на оба тела. 

    При этом ее значение по модулю не изменяется. Если на одно из двух соприкасающихся тел действует сила, то она оказывает влияние и на другое.

    На предмет, остающийся без движения, влияет сила трения покоя. Пока ее значение не превысит внешнее вмешательство, пытающееся сместить предмет, он не изменит положение. 

    Когда же ее величина возрастет до определенного предела, произойдет перемещение в новое место. Тогда появляется сила трения скольжения, ее направление противоположно смещению предмета.

    Благодаря действию трения невозможно перемещаться вечно. Движение закончится через определенное время. Если же внешняя сила вновь превысит значение трения покоя, то перемещение возобновится.

    Виды силы трения

    Основные виды силы трения:

    1. Покоя. Она сопротивляется внешним факторам, пытающимся сдвинуть тело. При их отсутствии ее значение приравнивают к нулю.

    2. Скольжения. Она находится в прямой зависимости от коэффициента трения и значения силы, с которой поверхность оказывает давление на тело. Ее направление действия всегда перпендикулярно поверхности. Она обычно ниже, чем максимальная сила трения покоя.

    3. Качения. Она возникает, когда одно тело катится по поверхности другого. Например, при соприкосновении колеса едущего велосипеда с дорогой или при работе подшипникового механизма.

      Она оказывает гораздо меньшее действие, чем трение скольжения, если остальные условия считать неизменными. Ее открытие стало незаменимым для техники.

      Колеса и круглые детали, вращающиеся и меняющие положение, являются основой многих механизмов и работы транспортных средств.

    4. Верчения. Она появляется, когда один предмет начинает вращаться по поверхности другого.

    Само трение может быть нескольких видов:

    1. Сухим. Проявляется при соприкосновении твердых поверхностей. На них не наблюдаются другие материалы и слои. Такое в природе и жизни встречается крайне редко.

    2. Вязким. Его еще называют жидкостным. Возникает при взаимодействии твердого тела с жидкостью или газом. Они могут течь мимо неподвижного предмета. Или он перемещается в жидкой или газообразной субстанции. Например, лодку тянут на канате по реке. Тело заставляет перемещаться верхний слой жидкости или газа. Словно тянет его за собой.

      Он в свою очередь действует на другой слой, расположенный ниже. Чем дальше от тела, тем ниже скорость движения слоев. Это происходит из-за уменьшения влияния твердого предмета. Между слоями возникает сила трения, так как тела движутся относительно друг друга.

      Она приводит к их торможению, а значит и действует на твердое тело, останавливая его. Температура определяет степень вязкости веществ. Например, она снижается при нагревании масла. Это наглядно видно на работе автомобильного мотора.

      Когда машина долго находилась на холоде, двигатель нужно сначала разогреть, чтобы увеличить скорость его вращения. У газов обратная зависимость. Вязкость растет с увеличением температуры.

    3. Смешанным. Оно наблюдается, когда между телами, соприкасающимися поверхностями, есть слой смазки.


    Также трение разделяют на внутреннее и внешнее. Последнее возникает при взаимодействии твердых тел. Значит к нему можно отнести сухое трение. 

    Внутреннее же характеризуется вязкостью. Именно при взаимодействии жидкостей или газа смещение происходит внутри одного тела, когда слои движутся относительно друг друга.

    Как найти силу трения

    Чтобы найти силу трения, нужно знать коэффициент трения k, зависящий от свойств поверхности. Это постоянная величина, значение которой берется из таблиц. 

    Также понадобится сила реакции опоры N. Нужная величина определяется произведением двух значений:

    Fтр = k * N

    Буквой k обозначается коэффициент. Также можно встретить символ µ. Обычно он находится в пределах от 0,1 до 1. 

    Например, для резины, перемещающейся по сухому асфальту, при движении он колеблется от 0,5 до 0,8. При скольжении металла по дереву – 0,4, железа по чугуну – 0,18.

    Сила реакции опоры не отличается от величины силы тяжести, зависящей от веса тела. Поэтому ее значение равно произведению массы тела (m) на ускорение свободного падения (g).

    N = m * g

    Это постоянная величина, составляющая 9,8 м/с². Это правило действует, когда приходится иметь дело с горизонтальной поверхностью. Сила тяжести и реакция опоры уравновешивают друг друга. Поэтому их считают равными величинами.

    Если же происходит движение по наклонной плоскости, ход рассуждений несколько меняется. На предмет по-прежнему действуют силы тяжести и реакция опоры, но не в одном направлении.

    При знании угла наклона плоскости к горизонту, формула трансформируется и приобретает следующий вид:

    N = k * m *·g *·cosα

    Здесь необходимо руководствоваться тем, что косинус это отношение катета, прилежащего к углу, к гипотенузе треугольника. Это один из тех случаев, доказывающих тесную взаимосвязь физики и тригонометрии.

    Пример решения задачи

    Задача, на применение полученных знаний, связанных с силой трения, поможет закрепить материал.

    Условие задачи. На полу стоит коробка весом 7 кг. Коэффициент трения между ней и полом составляет 0,3. К коробке прикладывают силу, равную 14 Н. Сдвинется ли она с места?

    Решение.

    Коробка находится на горизонтальной плоскости. Она подвержена действию силы тяжести, которую уравнивает реакция опоры. Они направлены перпендикулярно коробке и полу. Значит, для определения силы реакции опоры, нужно умножить массу коробки на ускорение:

    N = m * g;

    N = 10 кг * 9,8 м/с² = 98 кг * м/с² = 98 Н;

    Fтр = k * N;

    Fтр = 0,3·* 98Н = 29,4 Н.

    Ответ: полученное значение превышает усилия, приложенные к коробке со стороны, так как 29,4 Н > 14 Н. Значит, она останется на первоначальном месте.

    Сила трения присутствует в жизни постоянно. Она мешает предметам сдвинуться с места и противится их длительному скольжению и перемещению. Ее значение зависит от поверхностей, с которыми приходится соприкасаться, их свойств и характеристик. 

    Площадь соприкосновения не учитывается, зато имеет значение положение тела. Например, сила, возникающая при движении автомобиля по ровной поверхности, отличается от величины при перемещении по горной местности, расположенной под углом к горизонту. А если машине приходится двигаться на мокрой дороге, то значение снова меняется.

    Источник: https://nauka.club/fizika/sila-treniya.html

    Делаем просто
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: