Как найти коэффициент вариации

Содержание
  1. Дисперсия, среднеквадратичное (стандартное) отклонение, коэффициент вариации в Excel
  2. Дисперсия
  3. Расчет дисперсии в Excel
  4. Свойства дисперсии
  5. Среднеквадратичное (стандартное) отклонение
  6. Расчет cреднеквадратичного (стандартного) отклонения в Excel
  7. Коэффициент вариации
  8. Расчет коэффициента вариации в Excel
  9. Коэффициент осцилляции
  10. Расчет показателей вариации в Excel
  11. Максимальное и минимальное значение
  12. Среднее линейное отклонение
  13. Среднее квадратическое отклонение
  14. Коэффициент вариации по 44-ФЗ. Пример расчёта, формула
  15. Что такое коэффициент вариации
  16. Правила расчета
  17. Пример расчета
  18. CFA — Коэффициент вариации
  19. Формула коэффициента вариации
  20. Пример расчета коэффициента вариации для ставок доходности
  21. Задача №6. Расчёт показателей вариации
  22. Определите:
  23. Решение:
  24. Коэффициент вариации в статистике: примеры расчета
  25. Показатели описательной статистики
  26. Среднее арифметическое
  27. Стандартное отклонение
  28. Расчёты в Microsoft Ecxel 2016
  29. Коэффициент вариации (CV)
  30. Формула CV
  31. Коэффициент вариации в Excel и Open Office
  32. Пример использования коэффициента вариации для выбора объекта инвестиций

Дисперсия, среднеквадратичное (стандартное) отклонение, коэффициент вариации в Excel

Как найти коэффициент вариации

Из предыдущей статьи мы узнали о таких показателях, как размах вариации, межквартильный размах и среднее линейное отклонение. В этой статье изучим дисперсию, среднеквадратичное отклонение и коэффициент вариации.

Дисперсия

Дисперсия случайной величины – это один из основных показателей в статистике. Он отражает меру разброса данных вокруг средней арифметической.

Сейчас небольшой экскурс в теорию вероятностей, которая лежит в основе математической статистики. Как и матожидание, дисперсия является важной характеристикой случайной величины. Если матожидание отражает центр случайной величины, то дисперсия дает характеристику разброса данных вокруг центра.

Формула дисперсии в теории вероятностей имеет вид:

То есть дисперсия — это математическое ожидание отклонений от математического ожидания.

На практике при анализе выборок математическое ожидание, как правило, не известно. Поэтому вместо него используют оценку – среднее арифметическое. Расчет дисперсии производят по формуле:

где

s2 – выборочная дисперсия, рассчитанная по данным наблюдений,

X – отдельные значения,

X̅– среднее арифметическое по выборке.

Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом здесь. Однако при увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной.

Простыми словами дисперсия – это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения.

В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя.

Теперь вы знаете, как найти дисперсию.

Расчет дисперсии в Excel

Генеральную и выборочную дисперсии легко рассчитать в Excel. Есть специальные функции: ДИСП.Г и ДИСП.В соответственно.

В чистом виде дисперсия не используется. Это вспомогательный показатель, который нужен в других расчетах. Например, в проверке статистических гипотез или расчете коэффициентов корреляции. Отсюда неплохо бы знать математические свойства дисперсии.

Свойства дисперсии

Свойство 1. Дисперсия постоянной величины A равна 0 (нулю).

D(A) = 0

Свойство 2. Если случайную величину умножить на постоянную А, то дисперсия этой случайной величины увеличится в А2 раз. Другими словами, постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат.

D(AX) = А2 D(X)

Свойство 3. Если к случайной величине добавить (или отнять) постоянную А, то дисперсия останется неизменной.

D(A + X) = D(X)

Свойство 4. Если случайные величины X и Y независимы, то дисперсия их суммы равна сумме их дисперсий.

D(X+Y) = D(X) + D(Y)

Свойство 5. Если случайные величины X и Y независимы, то дисперсия их разницы также равна сумме дисперсий.

D(X-Y) = D(X) + D(Y)

Среднеквадратичное (стандартное) отклонение

Если из дисперсии извлечь квадратный корень, получится среднеквадратичное (стандартное) отклонение (сокращенно СКО). Встречается название среднее квадратичное отклонение и сигма (от названия греческой буквы). Общая формула стандартного отклонения в математике следующая:

На практике формула стандартного отклонения следующая:

Как и с дисперсией, есть и немного другой вариант расчета. Но с ростом выборки разница исчезает.

Расчет cреднеквадратичного (стандартного) отклонения в Excel

Для расчета стандартного отклонения достаточно из дисперсии извлечь квадратный корень. Но в Excel есть и готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

Среднеквадратичное отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными.

Коэффициент вариации

Значение стандартного отклонения зависит от масштаба самих данных, что не позволяет сравнивать вариабельность разных выборках. Чтобы устранить влияние масштаба, необходимо рассчитать коэффициент вариации по формуле:

По нему можно сравнивать однородность явлений даже с разным масштабом данных. В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной.

В реальности, если коэффициент вариации превышает 33%, то специально ничего делать по этому поводу не нужно. Это информация для общего представления.

В общем коэффициент вариации используют для оценки относительного разброса данных в выборке.

Расчет коэффициента вариации в Excel

Расчет коэффициента вариации в Excel также производится делением стандартного отклонения на среднее арифметическое:

=СТАНДОТКЛОН.В()/СРЗНАЧ()

Коэффициент вариации обычно выражается в процентах, поэтому ячейке с формулой можно присвоить процентный формат:

Коэффициент осцилляции

Еще один показатель разброса данных на сегодня – коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

Таким образом, в статистическом анализе существует система показателей, отражающих разброс или однородность данных. 

Ниже видео о том, как посчитать коэффициент вариации, дисперсию, стандартное (среднеквадратичное) отклонение и другие показатели вариации в Excel.

в социальных сетях:

Источник: https://statanaliz.info/statistica/opisanie-dannyx/dispersiya-standartnoe-otklonenie-koeffitsient-variatsii/

Расчет показателей вариации в Excel

Как найти коэффициент вариации

Оригинал http://statanaliz.info/index.php/excel/formuly/37-raschet-pokazatelej-variatsii-v-excel

Добрый день, уважаемые любители статистического анализа данных, а сегодня еще и программы Excel.

Проведение любого статанализа немыслимо без расчетов. И сегодня в рамках рубрики «Работаем в Excel» мы научимся рассчитывать показатели вариации. Теоретическая основа была рассмотрена ранее в ряде статей о вариации данных.

Кстати, на этом указанная тема не закончилась, к выпуску планируются новые статьи – следите за рекламой! Однако сухая теория без инструментов реализации – вещь не сильно полезная.

Поэтому по мере появления теоретических выкладок, я стараюсь не отставать с заметками о соответствующих расчетах в программе Excel.

Сегодняшняя публикация будет посвящена расчету в Excel следующих показателей вариации:

— максимальное и минимальное значение

— среднее линейное отклонение

— дисперсия (по генеральной совокупности и по выборке)

— среднее квадратическое отклонение (по генеральной совокупности и по выборке)

— коэффициент вариации

Факт возможности расчета упомянутых показателей в Excel свидетельствует о практическом их использовании. И, несмотря на очевидность некоторых моментов, я постараюсь расписать все подробно.

Максимальное и минимальное значение

Начнем с формул максимума и минимума. Что такое максимальное и минимальное значение, уверен, знают почти все. Максимум – самое большое значение из анализируемого набора данных, минимум – самое маленькое (может быть и отрицательным числом).

Это крайние значения в совокупности данных, обозначающие границы их вариации. Примеры реального использования каждый может придумать сам – их полно. Это и минимальные/максимальные цены на что-нибудь, и выбор наилучшего или наихудшего решения задачи, и всего, чего угодно.

Минимум и максимум – весьма информативные показатели. Давайте теперь их рассчитаем в Excel.

Как нетрудно догадаться, делается сие элементарно – как два клика об асфальт. В Мастере функций следует выбрать: МАКС – для расчета максимального значения, МИН – для расчета минимального значения. Для облегчения поиска перечень всех функций можно отфильтровать по категории «Статистические».

Выбираем нужную формулу, в следующем окошке указываем диапазон данных (в котором ищется максимальное или минимальное значение) и жмем «ОК».

Функции МАКС и МИН достаточно часто используются, поэтому разработчики Экселя предусмотрительно добавили соответствующие кнопки в ленту. Они находятся там же, где суммаи среднее значение – в разворачивающемся списке.

В общем, для вызова функции максимума или минимума действий потребуется не больше, чем для расчета средней арифметической. Все архипросто.

Среднее линейное отклонение

Среднее линейное отклонение, напоминаю, представляет собой среднее из абсолютных (по модулю) отклонений от средней арифметической в анализируемой совокупности данных. Математическая формула имеет вид:

где

a – среднее линейное отклонение,

x – анализируемый показатель, с черточкой сверху – среднее значение показателя,

n – количество значений в анализируемой совокупности данных.

В Excel эта функция называется СРОТКЛ.

После выбора функции СРОТКЛ указываем диапазон данных, по которому должен произойти расчет. Нажимаем «ОК». Наслаждаемся результатом.

Среднее квадратическое отклонение

Среднеквадратическое отклонение по генеральной совокупности – это корень из генеральной дисперсии.

Выборочное среднеквадратическое отклонение – это корень из выборочной дисперсии.

Для расчета можно извлечь корень из формул дисперсии, указанных чуть выше, но в Excel есть и готовые функции:

— Среднеквадратическое отклонение по генеральной совокупности СТАНДОТКЛОН.Г

— Среднеквадратическое отклонение по выборке СТАНДОТКЛОН.В.

С названием этого показателя может возникнуть путаница, т.к. часто можно встретить синоним «стандартное отклонение». Пугаться не нужно – смысл тот же.

Далее, как обычно, указываем нужный диапазон и нажимаем на «ОК». Среднее квадратическое отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными. Об этом ниже.

Коэффициент вариации по 44-ФЗ. Пример расчёта, формула

Как найти коэффициент вариации

Одной из ключевых стадий подготовки закупочной документации становится расчет начальной максимальной цены контракта (НМЦК). Законодательно предусмотрено несколько способов, с помощью которых можно производить расчеты.

Чаще всего используется метод сопоставимых рыночных цен. При этом итоговая НМЦК должна определяться с учетом коэффициента вариации.

Поэтому всем заказчикам необходимо понять, что включает в себя этот показатель и как его правильно определить.

Что такое коэффициент вариации

Размер НМЦК определяется еще на этапе планирования. Эта сумма должна быть отражена в плане и план-графике. Непосредственно перед подготовкой извещения она корректируется с учетом сложившейся на тот момент экономической обстановки.

Вопросы, связанные с НМЦК рассматриваются в статье 22 44-ФЗ. Методики ее расчета описаны в Приказе Министерства экономики и развития № 567 от 02 октября 2013 года. В этом же документе приводятся правила определения коэффициента вариации.

Разработано несколько методик выявления НМЦК: нормативная, тарифная, проектно-сметная, затратная. Самым приоритетным считается метод сопоставимых рыночных цен.

Именно его рекомендуется использовать при определении стартовой цены. Он предполагает сравнение коммерческих предложений, предоставляемых потенциальными поставщиками по запросу заказчика.

Для проведения такого анализа и применяется коэффициент вариации. Он выражается в процентах.

Под коэффициентом вариации понимается мера относительного разброса предлагаемых цен. Он показывает, какую долю занимает средний разброс цен от среднего значения цены. Этот показатель может принимать следующие значения:

  1. Меньше 10%. В таком случае разница в ценах признается незначительной.
  2. От 10% до 20%. Разброс считается средним.
  3. От 20% до 33%. Разница признается значительной, но допустимой.
  4. Свыше 33%. Данные неоднородны. При расчете НМЦК не допускается использовать данные с коэффициентом вариации свыше 33%.

Для определения коэффициента разработана специальная формула. По ней легко подсчитать параметр, подставив соответствующие данные. Упростить себе задачу можно, используя калькуляторы, которые сегодня широко представлены в интернете. 

Что делать, если коэффициент завышен

Если при расчете коэффициента вариации получилось значение меньше 33%, то выборка признается однородной. Следовательно, полученное значение можно использовать для определения НМЦК. 

Если возникла такая ситуация, что значение коэффициента оказывается выше 33 процентов, тогда потребуется внесение корректировок в используемые данные. Для этого проводится дополнительное исследование рынка.

Необходимо собрать коммерческие предложения от большего количества поставщиков и повторить расчет на основе новых данных.

Если собрать дополнительные предложения не получается, можно воспользоваться сведениями из ранее заключенных договоров, которые хранятся в реестре контрактов. 

В крайней ситуации, когда никак не получается добиться нужного коэффициента вариации можно исключить из выборки неподходящие предложения. Вы также можете попросить поставщика указать в своем предложении нужную вам сумму. 

Правила расчета

Методика расчета коэффициента вариации прописана в приказе Минэкономразвития № 567. Согласно действующим нормам заказчик должен направить не менее пяти запросов коммерческих предложений потенциальным поставщикам. Для расчета используются не менее трех предложений, полностью соответствующих требованиям заказчика. 

Стоит отметить, что приказ № 567 не является нормативным актом, следовательно, его исполнение не обязательно. За его нарушение никаких штрафных санкций не предусматривается. Однако во избежание спорных ситуаций заказчика рекомендуется пользоваться именно этими правилами расчета.

Для определения коэффициента вариации применяется следующая формула:

Среднеквадратичное отклонение позволяет определить разброс данных. Для его определения выбирают среднюю цену и меру разброса. Вычислить среднеквадратичное отклонение удается по следующей формуле:

В ситуациях, когда закупка включает в себя одновременно несколько позиций, расчет ведется по каждой из них. Это позволяет выявить товары с наибольшим разбросом цен. 

Пример расчета

Предположим, что государственное учреждение проводит закупку принтеров для собственных нужд. Потенциальным поставщикам были отправлены соответствующие запросы. Было получено четыре коммерческих предложения цен: 2500 рублей, 2800 рублей, 2450 рублей и 2600 рублей.

В первую очередь необходимо рассчитать среднеарифметическое значение цены

Следующим шагом становится расчет среднеквадратичного отклонения

Осталось только рассчитать коэффициент вариации

Полученное значение коэффициента меньше 33%, следовательно, все собранные данные подходят для расчета стартовой цены контракта. Расчет НМЦК и коэффициента вариации оформляются в форме отчета, который становится обязательной частью закупочной документации. 

Коэффициент вариации – важный инструмент, позволяющий оценить правильность ценовых предложений, полученных от поставщиков. Поэтому при составлении документации заказчикам необходимо учитывать правила расчета этого показателя и особенности его применения.

Источник: https://GoszakupkiRF.ru/poleznye-stati/219-koeffitsient-variatsii

CFA — Коэффициент вариации

Как найти коэффициент вариации

Коэффициент вариации – относительная мера дисперсии и поэтому он полезен для сравнения изменчивости финансовых данных, выраженных в разных единицах измерения. Рассмотрим коэффициент вариации в рамках изучения количественных методов по программе CFA.

(см. начало)

CFA — Размах, среднее абсолютное отклонение и меры дисперсии.
CFA — Дисперсия и стандартное отклонение.
CFA – Полудисперсия, полуотклонение и связанные с ними концепции.
CFA — Неравенство Чебышева.

Ранее мы отмечали, что стандартное отклонение легче интерпретировать, чем дисперсию, поскольку стандартное отклонение выражается в тех же единицах измерения, что и наблюдения.

Иногда нам может быть трудно понять, что означает стандартное отклонение с точки зрения относительной степени изменчивости различных наборов данных, либо потому, что наборы данных имеют значительно отличающиеся средние, либо потому, что наборы данных имеют разные единицы измерения.

Далее мы рассмотрим относительную меру дисперсии — коэффициент вариации, который может быть полезен в таких ситуациях. Относительная дисперсия (англ. 'relative dispersion') — это значение дисперсии, рассчитанное относительно контрольного значения.

Мы можем проиллюстрировать проблему интерпретации стандартного отклонения для двух значительно отличающихся наборов данных, используя две гипотетические выборки финансовых данных.

Первая выборка включает небольшие компании с объемом продаж за 2003 год в размере €50 млн., €75 млн., €65 млн. и €90 млн.

Вторая выборка включает крупные компании с объемом продаж за 2003 году в размере €800 млн., €825 млн., €815 млн. и €840 млн.

Используя Формулу 14, мы можем убедиться, что стандартное отклонение продаж для обоих выборок составляет €16.8 млн.

Вторая выборка была создана путем добавления €750 млн. к каждому наблюдению из первой выборки. Стандартное отклонение (и дисперсия) имеет свойство оставаться неизменным, если мы добавляем постоянную величину к каждому наблюдению.

В первой выборке самое большое наблюдение, €90 млн., — на 80% больше, чем самое маленькое наблюдение, €50 млн. Во второй выборке самое большое наблюдение всего на 5% больше, чем самое маленькое наблюдение.

По сути, стандартное отклонение в размере €16.8 млн. представляет собой высокую степень изменчивости для первой выборки со средними продажами в размере €70 млн., но незначительную степень изменчивости для второй выборки, средние продажи которой составляют €820 млн.

Коэффициент вариации полезен в ситуациях, подобных только что описанной.

Формула коэффициента вариации

Коэффициент вариации или CV (от англ. 'coefficient of variation'), представляет собой отношение стандартного отклонения набора наблюдений к их среднему значению:

\(\mathbf{ \left. CV = s \middle/ \ \overline X  \right. }\), (формула 15)

где s — стандартное отклонение выборки, а \(\overline X \) — среднее значение выборки.

(на практике CV обычно рассчитывается в процентах, как \(100( s / \ \overline X) \) ).

Например, когда наблюдения представляют собой ставки доходности, коэффициент вариации измеряет величину риска (стандартное отклонение) на единицу средней доходности. Выражая величину вариации относительно среднего значения наблюдений, коэффициент вариации позволяет напрямую сравнивать дисперсию для различных наборов данных.

Коэффициент вариации не привязан к шкале измерения (то есть он не имеет единиц измерения).

Мы можем проиллюстрировать применение коэффициента вариации на нашем предыдущем примере двух выборок финансовых данных компаний.

  • Коэффициент вариации для первой выборки составляет (€16.8 млн.) / (€70 млн.) = 0,24.
  • Коэффициент вариации для второй выборки составляет (€16.8 млн.) / (€820 млн.) = 0,02.

Это подтверждает нашу интуитивную догадку о том, что первая выборка имеет гораздо большую изменчивость продаж, чем вторая выборка.

Обратите внимание, что 0,24 и 0,02 являются «чистыми числами» в том смысле, что они не содержат единиц измерения (поскольку мы разделили стандартное отклонение на среднее значение, которое измеряется в тех же единицах, что и стандартное отклонение).

Если нам нужно сравнить дисперсию наборов данных, выраженных в разных единицах измерения, коэффициент вариации может быть весьма полезен, поскольку он не привязан к единицам измерения.

Приведенный ниже пример иллюстрирует расчет коэффициента вариации.

Пример расчета коэффициента вариации для ставок доходности

Таблица 24 включает среднегодовую доходность и стандартные отклонения, рассчитанные на основе месячной доходности основных фондовых индексов четырех азиатско-тихоокеанских рынков. Это индексы S&P/ASX 200 Index (Австралия), Hang Seng Index (Гонконг), Straits Times Index (Сингапур) и KOSPI Composite Index (Южная Корея).

Таблица 24. Среднеарифметическая годовая доходность и стандартное отклонение доходности для Азиатско-Тихоокеанских фондовых рынков, 2003-2012 гг.РынокСреднее арифметическоедоходности (%)Стандартное отклонениедоходности (%)
Австралия5.013.6
Гонконг9.422.4
Сингапур9.319.2
Южная Корея12.021.5

Источник: finance.yahoo.com.

Используя информацию и Таблицы 24, сделайте следующее:

  1. Рассчитайте коэффициент вариации для каждого рынка.
  2. Ранжируйте рынки от наиболее рискованных до наименее рискованных, используя CV в качестве меры относительной дисперсии.
  3. Определите, есть ли большая разница между абсолютной или относительной рискованностью рынков Гонконга и Сингапура. Используйте стандартное отклонение как меру абсолютного риска и CV как меру относительного риска.

Решение для части 1:

  • Австралия: CV = 13.6%/5.0% = 2.720.
  • Гонконг: CV = 22.4%/9.4% = 2.383.
  • Сингапур: CV = 19.2%/9.3% = 2.065.
  • Южная Корея: CV = 21.5%/12.0% = 1.792.

Решение для части 2:

Согласно CV, за исследуемый период 2003-2012 гг. ранжирование по степени риска выглядит следующим образом:

  • Австралия (наиболее рискованно),
  • Гонконг,
  • Сингапур и
  • Южная Корея (наименее рискованно).

Решение для части 3:

Согласно стандартному отклонению и CV, рынок Гонконга был более рискованным, чем рынок Сингапура.

Стандартное отклонение доходности Гонконга составляло (22.4 — 19.2)/19.2 = 0.167, что примерно на 17% больше, чем доходность Сингапура.

Источник: https://fin-accounting.ru/cfa/l1/quantitative/cfa-coefficient-of-variation

Задача №6. Расчёт показателей вариации

Как найти коэффициент вариации

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Размер вклада, руб.Число вкладчиков
До 400400 — 600600 — 800800 — 1000Свыше 1000
325612010488

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

Размер вклада, руб.Число вкладчиков
200 — 400400 — 600600 — 800800 — 10001000 — 1200
325612010488

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго — 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб.Число вкладчиков, fСередина интервала, хxf
200-400323009600
400-6005650028000
600-80012070084000
800-100010490093600
1000-120088110096800
Итого400312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб.Число вкладчиков, fСередина интервала, х 
200-40032300-48048015360
400-60056500-28028015680
600-800120700-80809600
800-100010490012012012480
1000-120088110032032028160
Итого40081280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия — это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб.Число вкладчиков, fСередина интервала, х
200-40032300-4802304007372800
400-60056500-280784004390400
600-800120700-806400768000
800-1000104900120144001497600
1000-12008811003201024009011200
Итого40023040000

5) Среднее квадратическое отклонение размера вклада определяется как корень квадратный из дисперсии:

6) Коэффициент вариации — это отношение среднего квадратического отклонения к средней арифметической:

По величине коэффициента вариации можно судить о степени вариации признаков совокупности. Чем больше его величина, тем больше разброс значений признаков вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя.

Источник: https://ecson.ru/economics/averages-and-measures-of-variation/zadacha-6.raschyot-pokazateley-variatsii.html

Коэффициент вариации в статистике: примеры расчета

Как найти коэффициент вариации

Как доказать, что закономерность, полученная при изучении экспериментальных данных, не является результатом совпадения или ошибки экспериментатора, что она достоверна? С таким вопросом сталкиваются начинающие исследователи.Описательная статистика предоставляет инструменты для решения этих задач. Она имеет два больших раздела – описание данных и их сопоставление в группах или в ряду между собой.

  • Показатели описательной статистики
  • Среднее арифметическое
  • Стандартное отклонение
  • Коэффициент вариации
  • Расчёты в Microsoft Ecxel 2016

Показатели описательной статистики

Существует несколько показателей, которые использует описательная статистика.

Среднее арифметическое

Итак, представим, что перед нами стоит задача описать рост всех студентов в группе из десяти человек. Вооружившись линейкой и проведя измерения, мы получаем маленький ряд из десяти чисел (рост в сантиметрах):

168, 171, 175, 177, 179, 187, 174, 176, 179, 169.

Если внимательно посмотреть на этот линейный ряд, то можно обнаружить несколько закономерностей:

  • Ширина интервала, куда попадает рост всех студентов, – 18 см.
  • В распределении рост наиболее близок к середине этого интервала.
  • Встречаются и исключения, которые наиболее близко расположены к верхней или нижней границе интервала.

Совершенно очевидно, что для выполнения задачи по описанию роста студентов в группе нет необходимости приводить все значения, которые будут измеряться.

Для этой цели достаточно привести всего два, которые в статистике называются параметрами распределения. Это среднеарифметическое и стандартное отклонение от среднего арифметического.

Если обратиться к росту студентов, то формула будет выглядеть следующим образом:

Среднеарифметическое значение роста студентов = (Сумма всех значений роста студентов) / (Число студентов, участвовавших в измерении)

Если свести все к строгим математическим терминам, то определение среднего арифметического (обозначается греческой буквой – μ («мю»)) будет звучать так:

Среднее арифметическое – это отношение суммы всех значений одного признака для всех членов совокупности (X) к числу всех членов совокупности (N).

Если применить эту формулу к нашим измерениям, то получаем, что μ для роста студентов в группе 175,5 см.

Стандартное отклонение

Если присмотреться к росту студентов, который мы измерили в предыдущем примере, то понятно, что рост каждого на сколько-то отличается от вычисленного среднего (175,5 см). Для полноты описания нужно понять, какой является разница между средним ростом каждого студента и средним значением.

На первом этапе вычислим параметр дисперсии. Дисперсия в статистике (обозначается σ2 (сигма в квадрате)) – это отношение суммы квадратов разности среднего арифметического (μ) и значения члена ряда (Х) к числу всех членов совокупности (N). В виде формулы это рассчитывается понятнее:

Значения, которые мы получим в результате вычислений по этой формуле, мы будем представлять в виде квадрата величины (в нашем случае – квадратные сантиметры). Характеризовать рост в сантиметрах квадратными сантиметрами, согласитесь, нелепо. Поэтому мы можем исправить, точнее, упростить это выражение и получим среднеквадратичное отклонение формулу и расчёт, пример:

Таким образом, мы получили величину стандартного отклонения (или среднего квадратичного отклонения) – квадратный корень из дисперсии. С единицами измерения тоже теперь все в порядке, можем посчитать стандартное отклонение для группы:

Получается, что наша группа студентов исчисляется по росту таким образом: 175,50±5,25 см.

Расчёты в Microsoft Ecxel 2016

Можно рассчитать описанные в статье статистические показатели в программе Microsoft Excel 2016, через специальные функции в программе. Необходимая информация приведена в таблице:

Наименование показателяРасчёт в Excel 2016*
Среднее арифметическое=СРГАРМ(A1:A10)
Дисперсия=ДИСП.В(A1:A10)
Среднеквадратический показатель=СТАНДОТКЛОН.В(A1:A10)
Коэффициент вариации=СТАНДОТКЛОН.Г(A1:A10)/СРЗНАЧ(A1:A10)
Коэффициент осцилляции=(МАКС(A1:A10)-МИН(A1:A10))/СРЗНАЧ(A1:A10)

* — в таблице указан диапазон A1:A10 для примера, при расчётах нужно указать требуемый диапазон.

Итак, обобщим информацию:

  1. Среднее арифметическое – это значение, позволяющее найти среднее значение показателя в ряду данных.
  2. Дисперсия – это среднее значение отклонений возведенное в квадрат.
  3. Стандартное отклонение (среднеквадратичное отклонение) – это корень квадратный из дисперсии, для приведения единиц измерения к одинаковым со среднеарифметическим.
  4. Коэффициент вариации – значение отклонений от среднего, выраженное в относительных величинах (%).

Отдельно следует отметить, что все приведённые в статье показатели, как правило, не имеют собственного смысла и используются для того, чтобы составлять более сложную схему анализа данных. Исключение из этого правила — коэффициент вариации, который является мерой однородности данных.

Источник: https://1001student.ru/ekonomika/koeffitsient-variatsii-v-statistike-primery-rascheta.html

Коэффициент вариации (CV)

Как найти коэффициент вариации

Коэффициент вариации (coefficient of variation, CV) – это статистическая мера дисперсии (разброса) данных вокруг некоторого среднего значения.

Коэффициент вариации представляет собой отношение среднеквадратичного отклонения к среднему значению и является весьма полезной величиной для сравнения степени вариации при переходе от одного ряда данных к другому, даже если их средние значения резко отличаются друг от друга.

СОДЕРЖАНИЕ

Коэффициент вариации показывает степень изменчивости некоторой выборки данных по отношению к среднему их значению. В финансах данный коэффициент позволяет инвесторам определить, насколько велика волатильность, или риск, по сравнению с величиной ожидаемой прибыли от инвестиций.

Чем меньше значение CV, тем лучший компромисс наблюдается между риском и доходностью. Обратите внимание, что если ожидаемая доходность в знаменателе отрицательна или равна нулю, полученное значение коэффициента может ввести вас в заблуждение.

Коэффициент вариации может быть весьма полезен при использовании соотношения риск/прибыль для выбора объекта инвестиций.

Например, инвестор не склонный к риску будет рассматривать активы с исторически низкой степенью волатильности и высокой степенью доходности по отношению к общему рынку (или к отдельной отрасли).

И наоборот, инвесторы склонные к риску, будут стремиться инвестировать в активы с исторически высокой степенью волатильности.

Формула CV может использоваться для определения дисперсии между исторической средней ценой и текущими показателями цены акции, товара или облигации.

Обычно данный коэффициентиспользуют в таких целях как:

  • Для сравнениянескольких различных рядов данных илипоказателей;
  • Для оценки потенциальныхобъектов инвестирования;
  • Для проведенияXYZ-анализа.

КЛЮЧЕВЫЕ МОМЕНТЫ

  • CV – это статистическаямера дисперсии в ряду данных вокругсреднего значения;
  • В финансах CVпозволяет инвесторам определить,насколько велика волатильность, илириск, по сравнению с величиной ожидаемойприбыли от инвестиций;
  • Чем ниже величинаотношения стандартного отклонения ксредней доходности,тем лучше соотношениериска и доходности.

Формула CV

Ниже приведена формула для расчета коэффициента вариации:

Обратите внимание, что если значение ожидаемой доходности в знаменателе формулы коэффициента вариации отрицательна или равна нулю, то результат расчёта по ней нельзя считать корректным.

Коэффициент вариации в Excel и Open Office

Коэффициент вариации можно достаточно легко рассчитать в Excel.

Несмотря на то, что в нём нет стандартной функции для расчёта CV, но зато есть функции позволяющие рассчитать стандартное отклонение (СТАНДОТКЛОН) и среднее значение (СРЗНАЧ).

Сначала используйте функцию стандартного отклонения, затем вычислите среднее значение, а после этого разделите ячейку, содержащую стандартное отклонение, на ячейку содержащую среднее значение.

В OpenOffice данный показательрассчитывается аналогично. Функциястандартного отклонения здесь — STDEV,а функция среднего значения— AVERAGE.

Давайтерассмотрим пример расчёта коэффициентавариации в Open Office.Предположим, что у насесть три потенциальных объекта дляинвестиций — объект А, объект Б и объектВ. Прибыль по каждому из этих проектовза последние 6 лет занесена в таблицупредставленную ниже:

Давайтерассчитаем значение CVдля каждого из этихобъектов. Начнём с расчёта стандартныхотклонений. Для этого применим к рядузначений прибыли отдельно по каждомуобъекту функцию STDEV:

Аналогичнымобразом рассчитаем среднее значениедля каждого ряда данных:

Наконецрассчитаем CV. Дляэтого разделим полученные значенияотклонений на средние значения. Врезультате получим следующую таблицу:

Кликните по картинке для увеличения

Очевидно, что из всех представленных объектов инвестиций предпочтительным будет объект Б имеющий наименьшее значение коэффициента CV.

Пример использования коэффициента вариации для выбора объекта инвестиций

Рассмотрим инвестора не склонного к риску, который хочет инвестировать в биржевой фонд (ETF) состоящий из корзины ценных бумаг отслеживающей индекс широкого рынка.

Инвестор выбирает SPDR S&P 500 ETF, Invesco QQQ ETF и iShares Russell 2000 ETF.

Затем он анализирует доходность и волатильность выбранных ETF за последние 15 лет и предполагает, что в будущем они могут иметь аналогичную доходность в отношении к своим долгосрочным средним значениям.

Для принятия решения инвестором используется следующая 15-летняя историческая информация:

  • SPDR S&P 500 ETF имеет среднюю годовую доходность 5,47% и стандартное отклонение 14,68%.

    Коэффициент вариации SPDR S&P 500 ETF составляет 2,68;

  • Средняя годовая доходность Invesco QQQ ETF составляет 6,88%, а стандартное отклонение-21,31%.

    Коэффициент вариации QQQ равен 3,09;

  • iShares Russell 2000 ETF имеет среднюю годовую доходность 7,16% и стандартное отклонение 19,46%. Коэффициент вариации IWM равен 2,72.

Исходя из этих данных, инвестор может инвестировать либо в SPDR S&P 500 ETF, либо в iShares Russell 2000 ETF, так как соотношение риска и вознаграждения для них является сравнительно одинаковым. А для Invesco QQQ ETF соотношение риск-доходность, как видите, будет несколько хуже.

Источник: https://www.AzbukaTreydera.ru/cv.html

Делаем просто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: