Как найти сторону по стороне и двум углам

Содержание
  1. Геометрия. Урок 3. Треугольники
  2. Определение треугольника
  3. Виды треугольников
  4. Отрезки в треугольнике
  5. Площадь треугольника
  6. Равнобедренный треугольник
  7. Равносторонний треугольник
  8. Прямоугольный треугольник
  9. Теорема Пифагора
  10. Примеры решений заданий из ОГЭ
  11. Как найти стороны прямоугольного треугольника? Основы геометрии
  12. Египетский треугольник
  13. Признаки равенства фигур
  14. Свойства треугольника с прямым углом
  15. Теоремы, применяемые к прямоугольному треугольнику
  16. Площадь треугольника
  17. Площадь треугольника по основанию и высоте
  18. Площадь равнобедренного треугольника по высоте и основанию
  19. Площадь прямоугольного треугольника по двум катетам
  20. Таблица с формулами площади треугольника
  21. Скачать формулы площади треугольника в виде картинки
  22. Как найти третью сторону треугольника — формулы и расчеты
  23. Дополнительные отрезки
  24. Основные свойства и понятия
  25. Важные теоремы
  26. Примеры решения задач
  27. Квадрат и его диагональ
  28. Две высоты и угол
  29. Как найти стороны прямоугольного треугольника
  30. Найти гипотенузу по двум катетам
  31. Формула
  32. Пример
  33. Найти гипотенузу по катету и прилежащему к нему острому углу
  34. Найти гипотенузу по катету и противолежащему к нему острому углу
  35. Найти гипотенузу по двум углам
  36. Найти катет по гипотенузе и катету
  37. Найти катет по гипотенузе и прилежащему к нему острому углу
  38. Найти катет по гипотенузе и противолежащему к нему острому углу
  39. Найти катет по второму катету и прилежащему к нему острому углу
  40. Найти катет по второму катету и противолежащему к нему острому углу
  41. Построение треугольника по стороне и двум прилежащим к ней углам
  42. Советуем посмотреть:
  43. Правило встречается в следующих упражнениях:

Геометрия. Урок 3. Треугольники

Как найти сторону по стороне и двум углам

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

-уроки на канале Ёжику Понятно.

страницы:

Определение треугольника

Треугольник – многоугольник с тремя сторонами и тремя углами.

Угол ∠ A – угол, образованный сторонами A B и A C и противолежащий стороне B C .

Угол ∠ B – угол, образованный сторонами B A и B C и противолежащий стороне A C .

Угол ∠ C – угол, образованный сторонами C B и C A и противолежащий стороне A B .

Виды треугольников

Треугольник остроугольный, если все три угла в треугольнике острые.

Треугольник прямоугольный, если у него один из углов прямой ( = 90 ° ) .

Треугольник тупоугольный, если у него один из углов тупой.

Примеры:

Основные свойства треугольника:

  • Против большей стороны лежит больший угол.
  • Против равных сторон лежат равные углы.
  • Сумма углов в треугольнике равна 180 ° .
  • Если продолжить одну из сторон треугольника, например, A C , и взять на продолжении стороны точку D , образуется внешний угол ∠ B C D к исходному углу ∠ A C B . Внешний угол равен сумме двух внутренних углов, не смежных с ним. ∠ B C D = 180 ° − ∠ A C B ∠ B C D = ∠ A + ∠ B
  • Неравенство треугольника: любая из сторон треугольника меньше суммы двух других сторон и больше их разности.

Отрезки в треугольнике

Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.

Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.

Свойства биссектрис треугольника:

  • Биссектриса угла – геометрическое место точек, равноудаленных от сторон угла.
  • Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам: a b = m n
  • Биссектрисы пересекаются в одной точке. Точка пересечения биссектрис – центр вписанной в треугольник окружности.

Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.

Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Свойства медиан треугольника:

  • Медиана разбивает треугольник на два равновеликих треугольника (два треугольника, имеющих одинаковую площадь).
  • Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
  • Три медианы, проведенные в одном треугольнике, разбивают его на шесть равновеликих треугольников. S 1 = S 2 = S 3 = S 4 = S 5 = S 6

Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.

Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.

Пример:

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.

m = a 2

Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.

Площадь треугольника

Площадь произвольного треугольника можно найти следующими способами:

  • Полупроизведение стороны на высоту, проведенную к этой стороне. S = 1 2 a ⋅ h a
  • Полупроизведение двух сторон на синус угла между ними. S = 1 2 a ⋅ b ⋅ sin α
  • По формуле Герона. S = p ( p − a ) ( p − b ) ( p − c ) p = a + b + c 2

Равнобедренный треугольник

Равнобедренным называется треугольник, у которого две стороны равны.

Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.

Свойства равноберенного треугольника:

  • В равнобедренном треугольнике углы при основании равны.
  • В равнобедренном треугольнике медиана, высота и биссектриса, проведенные к основанию, совпадают.

Равносторонний треугольник

Равносторонним называется треугольник, у которого все стороны и все углы равны.

Площадь равностороннего треугольника находится по формуле S = a 2 3 4

Высота равностороннего треугольника находится по формуле h = a 3 2

Прямоугольный треугольник

Треугольник называется прямоугольным, если у него один из углов равен 90 ° .

Свойства прямоугольного треугольника:

  • Сумма двух острых углов треугольника равна 90 ° .
  • Катет, лежащий напротив угла в 30 ° , равен половине гипотенузы.
  • Если катет равен половине гипотенузы, он лежит напротив угла в 30 ° . a = c 2 c = 2 ⋅ a
  • Медиана, проведенная из вершины прямого угла, равна половине гипотенузы. m = c 2
  • Пропорциональные отрезки в прямоугольном треугольнике a = m ⋅ c b = n ⋅ c h = m ⋅ n

Теорема Пифагора

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

c 2 = a 2 + b 2

У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:

S = 1 2 a ⋅ b

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с треугольниками

Скачать домашнее задание к уроку 3.

Источник: https://epmat.ru/modul-geometriya/urok-3-treugolniki/

Как найти стороны прямоугольного треугольника? Основы геометрии

Как найти сторону по стороне и двум углам

Катеты и гипотенуза – стороны прямоугольного треугольника. Первые – это отрезки, которые прилегают к прямому углу, а гипотенуза является самой длинной частью фигуры и находится напротив угла в 90о. Пифагоровым треугольником называется тот, стороны которого равны натуральным числам; их длины в таком случае имеют название «пифагорова тройка».

Египетский треугольник

Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного треугольника (фигура известна на весь мир) составляют 3, 4, 5.

Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c2 (квадрат гипотенузы) = a2+b2 (сумма квадратов катетов).

Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется «египетским». Интересно то, что радиус окружности, которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.

При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.

Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.

Признаки равенства фигур

  • Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, – бесспорный признак равенства фигур. Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
  • При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником. По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.

По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.

Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.

Свойства треугольника с прямым углом

Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.

Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. Площадь фигуры можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.

В прямоугольном треугольнике действуют свойства углов в 30о, 45о и 60о.

  • При угле, который равен 30о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
  • Если угол 45о, значит, второй острый угол также 45о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
  • Свойство угла в 60о заключается в том, что третий угол имеет градусную меру в 30о.

Площадь легко узнать по одной из трех формул:

  1. через высоту и сторону, на которую она опускается;
  2. по формуле Герона;
  3. по сторонам и углу между ними.

Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами.

Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину.

Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.

Теоремы, применяемые к прямоугольному треугольнику

Геометрия прямоугольного треугольника включает в себя использование таких теорем, как:

  1. Теорема Пифагора. Ее суть заключается в том, что квадрат гипотенузы равен сумме квадратов катетов. В евклидовой геометрии данное соотношение является ключевым. Использовать формулу можно, если дан треугольник, к примеру, SNH. SN – гипотенуза, и ее необходимо найти. Тогда SN2=NH2+HS2.
  2. Теорема косинусов. Обобщает теорему Пифагора: g2=f2+s2-2fs*cos угла между ними. Например, дан треугольник DOB. Известны катет DB и гипотенуза DO, необходимо найти OB. Тогда формула принимает данный вид: OB2=DB2+DO2-2DB*DO*cos угла D. Существует три следствия: угол треугольника будет остроугольным, если из суммы квадратов двух сторон вычесть квадрат длины третьей, полученный результат должен быть меньше нуля. Угол – тупоугольный, в том случае, если данное выражение больше нуля. Угол – прямой при равенстве нулю.
  3. Теорема синусов. Она показывает зависимость сторон к противолежащим углам. Иными словами, это отношение длин сторон к синусам противолежащих углов. В треугольнике H, где гипотенузой является HF, будет справедливо: HF/sin угла B=/sin угла H=HB/sin угла F.

Источник: https://FB.ru/article/214757/kak-nayti-storonyi-pryamougolnogo-treugolnika-osnovyi-geometrii

Площадь треугольника

Как найти сторону по стороне и двум углам

 → 

Геометрия

 → 

Площадь треугольника

Площадь треугольника, формулы для вычисления площади различных видов треугольников в зависимости от известных исходных данных, калькулятор для нахождения площади онлайн и сводная таблица с формулами площадей треугольников.

Таблица с формулами площади треугольника (в конце страницы)

Скачать формулы площади треугольника в виде картинки или файла PDF (в конце страницы)

— Вычисления   (показано)   (скрыто)

— примечания   (показано)   (скрыто)

Для всех треугольников

1

Площадь треугольника по основанию и высоте

Сторона a

Высота h

Основанием треугольника может быть выбрана любая из сторон треугольника.

2

Сторона a

Сторона b

Угол α° между сторонами a и b

Угол α между сторонами может быть любым: тупым, острым, прямым.

3

Сторона a

Сторона b

Сторона c

Радиус r вписанной окружности

4

Сторона a

Сторона b

Сторона c

Радиус R описанной окружности

5

Полупериметр: 

Сторона a

Сторона b

Сторона c

6

Сторона a

Угол β°

Угол α°

Для равнобедренных треугольников

7

Сторона a (a = b)

Сторона c

8

Боковая сторона a (a = b)

Угол α° между боковыми сторонами

9

Боковая сторона a (a = b)

Основание треугольника c

Угол β° между основанием и стороной

10

Основание треугольника c

Угол α° между боковыми сторонами

Для равносторонних треугольников

11

Площадь равнобедренного треугольника по высоте и основанию

Основание треугольника c

Высота h

12

Сторона a (a = b = c)

13

Высота h

14

Радиус r вписанной окружности

15

Радиус R описанной окружности

Для прямоугольных треугольников

16

Площадь прямоугольного треугольника по двум катетам

Катет a

Катет b

17

Сторона c

Угол α

18

Сторона b

Угол α

19

Отрезок d

Отрезок e

20

Сторона с

Радиус r

21

Полупериметр: 

Сторона a

Сторона b

Сторона c

Для вычисления площади треугольника применяются различные формулы, в зависимости от известных исходных данных. Выше приведены формулы и калькулятор, который поможет вычислить площадь треугольника или проверить уже выполненные вычисления. Приведены общие формулы для всех типов треугольников, частные случаи для равносторонних, равнобедренных и прямоугольных треугольников.

Наш калькулятор для вычисления площади поможет вам вычислить площадь разных видов треугольников или проверить уже выполненные вычисления.

В зависимости от вида треугольника и его известных исходных данных, площадь треугольника можно вычислить по различным формулам.

Таблица с формулами площади треугольника

Определения

Площадь треугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной тремя отрезками (сторонами), которые соединяют три точки (вершины), не лежащие на одной прямой.

Треугольник – это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Отрезки называют сторонами треугольника, а точки – вершинами треугольника.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км2, м2, см2, мм2 и т.д.

Скачать формулы площади треугольника в виде картинки

Источник: https://doza.pro/art/math/geometry/area-triangle

Как найти третью сторону треугольника — формулы и расчеты

Как найти сторону по стороне и двум углам

Под геометрическим элементом полагают какой-либо объект, который имеет определенную меру и является составляющей частью некоторой фигуры. Например, для сферы основными образующими элементами являются радиус и центр.

Как известно, треугольник — это фигура, которая состоит из трех отрезков и такого же количества вершин. При этом все отрезки попарно пересекаются. Из определения фигуры следует, что ее образуют два типа элементов, общее количество которых составляет 6:

  • сторона (3);
  • вершина (3).

Обычно треугольник обозначают большими латинскими буквами, например, ABC, PQM и так далее. Каждая буква — это название вершины (точка пересечения двух отрезков). AB, BC и CA, которые являются длинами сторон, принято обозначать маленькими латинскими буквами по названию противоположных им вершин, то есть c, a и b, соответственно.

Дополнительные отрезки

Несмотря на всю простоту построения фигуры, она обладает большим количеством дополнительных элементов, которые ее могут определять. Среди них самыми важными являются следующие:

  1. Медиана — отрезок, который соединяет вершину и середину противоположной стороны. Таких отрезков в треугольнике три. Все они пересекаются в одной точке, которая является центром масс фигуры. Эта точка делит каждую медиану в отношении 2:1, начиная от вершины. Каждый из трех названных отрезков делит треугольник на две аналогичных фигуры равной площади.
  2. Биссектриса — отрезок, который отличается от медианы тем, что он делит пополам соответствующий угол.
  3. Высота — перпендикуляр, который из вершины опускается на сторону фигуры. Его удобно использовать при вычислении площади или при определении его углов через тригонометрические выражения. Для некоторых типов треугольников высота может совпадать со стороной (катет в прямоугольной фигуре).
  4. Радиусы вписанной и описанной окружностей. Эти замкнутые симметричные кривые можно провести для любого треугольника. Указанные радиусы однозначно определяются через стороны и углы фигуры.
  5. Средняя линия — это соединяющий две середины сторон отрезок. Его особенность заключается в том, что он всегда параллелен третьей стороне и равен половине ее длины.

Основные свойства и понятия

Треугольник является одной из самых изученных фигур в геометрии. Для него известны многие теоремы, которые с успехом используются при решении задач. Существует два основных свойства фигуры, которые следуют из характеристик евклидового пространства:

  1. Равенство суммы трех углов 180 °, то есть A + B + C = 180 °. Этот факт доказал еще Евклид в своем знаменитом труде «Элементы». По этой причине треугольник не может содержать больше одного прямого или тупого внутреннего угла.
  2. Если известны три отрезка a, b и c такие, что выполняется равенство a + b = c, то из них составить треугольник невозможно. Это фундаментальное свойство говорит о том, что для всякого типа рассматриваемой фигуры сумма длин ее двух любых сторон всегда больше длины третьей.

Помимо названных свойств, следует знать о треугольнике еще такое понятие, как подобие. Его суть состоит в том, что одна из рассматриваемых фигур является точной копией в миниатюре другой. Для подобных треугольников все углы равны попарно, а все три стороны относятся соответственно попарно друг к другу с одним и тем же коэффициентом подобия.

Еще одной полезной характеристикой рассматриваемой фигуры является ее качество (CT). Вычисляется оно по следующей формуле:

CT = (a + b — c)*(b + c — a)*(c + a — b)/(a*b*c).

Величина CT лежит в пределах от 0 до 1. Она показывает степень близости фигуры к равностороннему, то есть к наиболее симметричному объекту. Если CT < 0,5, то треугольник считается вырожденным (один из его углов будет тупым, причем чем меньше CT, тем больше величина этого угла), если же CT > 0,5, то фигура характеризуется, как имеющая хорошее качество.

Величина CT применяется для алгоритмов, которые разделяют какую-либо изучаемую геометрическую поверхность на сетку треугольников. Если в этой сетке генерируется много низкокачественных фигур, то будет велика ошибка аппроксимации рассматриваемой величины.

Важные теоремы

Знание теорем для рассматриваемой фигуры позволяет понять, как найти сторону, зная 2 стороны треугольника. Прежде всего применяются две базовые теоремы:

  1. Синусов. Как известно, синус — это тригонометрическая функция, которая вводится в прямоугольном треугольнике и определяет отношение противолежащего углу катета к гипотенузе. Теорема синусов для фигуры произвольного типа устанавливает следующее математическое взаимоотношение между отрезками и углами: a/sinA = b/sinB = c/sinC. Это означает, что вычислить длину любой стороны можно, если известен еще какой-нибудь отрезок и два угла.
  2. Косинусов. Как и синус, косинус тоже является тригонометрической функцией, которая определяет отношение катета прилежащего к гипотенузе прямоугольной фигуры. Теорему косинусов удобно записать в виде следующего математического выражения: c 2 = a 2 + b 2 — 2*a*b*cosC. С помощью этого равенства можно найти 3 сторону треугольника по 2 сторонам известным и углу между ними.

К этим двум теоремам следует добавить еще два важных равенства, которые связаны с именами древнегреческих философов.

Первое выражение базируется на знаменитой теореме Пифагора, которая устанавливает связь между длинами двух катетов (меньшие стороны) и гипотенузы (большая сторона) в треугольнике с прямым углом. Если гипотенузу обозначить буквой c, тогда будет выполняться следующее равенство:

c 2 = a 2 + b 2 .

Если известные любые две стороны, то для определения третьей достаточно взять под квадратный корень соответствующую сумму или разницу квадратов.

Вторая из дополнительных теорем носит название философа Аполлония Пергского. Соответствующее ей математическое выражение выглядит так:

a 2 + b 2 = ½*c 2 + 2*Mc 2 .

Здесь Mc — это медиана, проведенная к стороне c из вершины C. Это равенство также называют в математике теоремой медианы.

Примеры решения задач

После того как изучены и рассмотрены основные понятия, свойства и теоремы для различного рода треугольников, можно переходить к решению геометрических задач. Поскольку для этого требуется в большинстве случаев знать значения тригонометрических функций, рекомендуется воспользоваться либо соответствующими таблицами, либо инженерным калькулятором.

Задачи школьного курса с треугольниками, как правило, не являются сложными. Они решаются благодаря однократному применению какого-либо свойства или теоремы.

Квадрат и его диагональ

Пусть дан квадрат, сторона которого составляет 11 см. Необходимо определить половину длины его диагонали.

Эту геометрическую задачу проще всего решить, если увидеть, что две смежные стороны исходной фигуры и ее диагональ образуют прямоугольный треугольник, который к тому же является равнобедренным. Каждая из равных сторон в нем имеет длину 11 см и является катетом. Диагональ c — это гипотенуза. Применяя пифагорову теорему, можно получить следующее равенство:

c = (11 2 + 11 2 )0,5 ≈ 15,556 см.

Поскольку половина диагонали в два раза меньше гипотенузы, то искомым ответом на задачу будет число c/2 ≈ 7,778 см.

Две высоты и угол

Дан треугольник ABC. Известно, что при вершине C угол составляет 37 °. Из вершин A и B проведены высоты к сторонам этого треугольника, их длины составляют h1 = 10 см и h2 = 8 см, соответственно. Необходимо узнать длину стороны фигуры, которая лежит против угла C.

Из условия задачи можно найти длины сторон AC и BC. Для этого следует увидеть, что каждая из высот с двумя другими сторонами треугольника образует прямоугольную фигуру. Воспользовавшись тригонометрическими равенствами, можно получить следующие результаты:

  • AC = h1/sinC = 10/sin (37 °) ≈ 16,616 см;
  • BC = h2/sinC = 8/sin (37 °) ≈ 13,293 см.

Против угла C лежит сторона AB, которую следует найти. Получается, что известны две стороны треугольника (AC и BC) и угол между ними. Остается применить теорему косинусов, чтобы получить ответ:

AB = (AC 2 + BC 2 — 2*AC*BC*cosC)0,5 = (16,616 2 + 13,293 2 — 2* 16,616 * 13,293 *cos (37 °))0,5 ≈ 10 см.

Полученный результат свидетельствует о том, что высота h1 совпадает со стороной AB с рассчитанной точностью, то есть исходный треугольник являлся прямоугольным.

Таким образом, для нахождения стороны треугольника, если известны две другие его стороны или иные отрезки, следует воспользоваться теоремами. Основными из них являются теорема косинусов и синусов, а также Пифагора и Аполлония.

Источник: https://nauka.club/matematika/geometriya/kak-nayti-tretyu-storonu-treugolnika.html

Как найти стороны прямоугольного треугольника

Как найти сторону по стороне и двум углам

Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:

c² = a² + b²

следовательно: c = √a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √3² + 4² = √9 + 16 = √25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Построение треугольника по стороне и двум прилежащим к ней углам

Как найти сторону по стороне и двум углам

Задача:

Построить треугольник по стороне и двум прилежащим к ней углам.

Дано: отрезок МК, 1, 2.

ПостроитьАВС такой, что АВ = МК, ВАС =1, АВС =2.

Решение:

С помощью линейки проводим прямую и на ней с помощью циркуля отложим отрезок АВ, равный отрезку МК.

Для этого произвольно на прямой ставим точку А, с помощью циркуля измеряем отрезок МК и строим окружность с центром в точке А радиуса МК (всю окружность строить необязательно, смотри, выделенное красным цветом). Точку пересечения окружности с прямой обозначаем В.

Далее строим угол ВАF равный углу 1. Для этого строим с помощью циркуля окружность радиуса МК с центром в вершине угла 1  (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 1 обозначаем N и Р.

С помощью циркуля измеряем длину отрезка NP и строим окружность радиуса NP с центром в точке В (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения окружности с окружностью радиуса МК с центром в точке А обозначаем F.

Далее, проводим луч АF с помощью линейки.

Далее, строим угол АВD равный углу 2. Для этого строим с помощью циркуля окружность радиуса МК с центром в вершине угла 2  (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 2 обозначаем О и Е.

С помощью циркуля строим окружность радиуса МК с центром в точке В (всю окружность строить необязательно, смотри, выделенное красным цветом), затем измеряем длину отрезка ОЕ и строим окружность радиуса ОЕ с центром в точке А (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения данных окружностей обозначаем D.

Далее, проводим луч ВD с помощью линейки.

Точку пересечения лучей АF и ВD обозначаем С. Получаем треугольник АВС, в котором по построению АВ = МК, ВАС =1, АВС =2, следовательно, треугольник АВС искомый.

Данная задача не всегда имеет решение. Так как по теореме о сумме углов треугольника: сумма углов всякого треугольника равна 1800. Значит, сумма двух данных углов должна быть меньше 1800. Если же сумма двух данных углов будет больше 1800, то нельзя построить треугольник, углы которого равнялись бы данным углам.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Теорема о сумме углов треугольника

Остроугольный, прямоугольный и тупоугольный треугольники

Теорема о соотношениях между сторонами и углами треугольника

Неравенство треугольника

Некоторые свойства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Уголковый отражатель

Расстояние от точки до прямой

Расстояние между параллельными прямыми

Построение треугольника по двум сторонам и углу между ними

Построение треугольника по трем его сторонам

Соотношения между сторонами и углами треугольника

Правило встречается в следующих упражнениях:

7 класс

Задание 288, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 289, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 290, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 291, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

© budu5.com, 2020

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/3447

Делаем просто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: