Как построить линейную функцию

Как построить график функции в excel по её формуле

Как построить линейную функцию

Построение графика зависимости функции является характерной математической задачей. Все, кто хотя бы на уровне школы знаком с математикой, выполняли построение таких зависимостей на бумаге.

В графике отображается изменение функции в зависимости от значения аргумента. Современные электронные приложения позволяют осуществить эту процедуру за несколько кликов мышью. Microsoft Excel поможет вам в построении точного графика для любой математической функции.

Давайте разберем по шагам, как построить график функции в excel по её формуле

Построение графика линейной функции в Excel

Построение графиков в Excel 2016 значительно улучшилось и стало еще проще чем в предыдущих версиях. Разберем пример построения графика линейной функции y=kx+b на небольшом интервале [-4;4].

Подготовка расчетной таблицы

В таблицу заносим имена постоянных  k и b в нашей функции. Это необходимо для быстрого изменения графика без переделки расчетных формул.

Установка шага значений аргумента функции

Далее строим таблицу значений линейной функции:

  • В ячейки A5 и A6 вводим соответственно обозначения аргумента и саму функцию. Запись в виде формулы будет использована в качестве названия диаграммы.
  • Вводим в ячейки B5 и С5 два значения аргумента функции с заданным шагом (в нашем примере шаг равен единице).
  • Выделяем эти ячейки.
  • Наводим указатель мыши на нижний правый угол выделения. При появлении крестика (смотри рисунок выше), зажимаем левую кнопку мыши и протягиваем вправо до столбца J.

Ячейки автоматически будут заполнены числами, значения которых различаются заданным шагом.

Автозаполнение значений аргумента функции

Далее в строку значений функции в ячейку B6 записываем формулу =$B3*B5+$D3

Внимание! Запись формулы начинается со знака равно(=). Адреса ячеек записываются на английской раскладке. Обратите внимание на абсолютные адреса со знаком доллара.

Запись расчётной формулы для значений функции

Чтобы завершить ввод формулы нажмите клавишу Enter или галочку слева от строки формул вверху над таблицей.

Копируем эту формулу для всех значений аргумента. Протягиваем вправо рамку от ячейки с формулой до столбца с конечными значениями аргумента функции.

Копирование формулы

Построение графика функции

Выделяем прямоугольный диапазон ячеек A5:J6.

Выделение таблицы функции

Переходим на вкладку Вставка в ленте инструментов. В разделе Диаграмма выбираем Точечная с гладкими кривыми (см. рисунок ниже).Получим диаграмму.

Построение диаграммы типа «График»

После построения координатная сетка имеет разные по длине единичные отрезки. Изменим ее перетягивая боковые маркеры до получения квадратных клеток.

График линейной функции

Теперь можно ввести новые значения постоянных k и b для изменения графика. И видим, что при попытке изменить коэффициент график остается неизменным, а меняются значения на оси. Исправляем.

Кликните на диаграмме, чтобы ее активировать.

Далее на ленте инструментов во вкладке Работа с диаграммами на вкладке Конструктор выбираем Добавить элемент диаграммы — Оси — Дополнительные параметры оси..

Вход в режим изменения параметров координатных осей

В правой части окна появиться боковая панель настроек Формат оси.

Редактирование параметров координатной оси

  • Кликните на раскрывающийся список Параметры оси.
  • Выберите Вертикальная ось (значений).
  • Кликните зеленый значок диаграммы.
  • Задайте интервал значений оси и единицы измерения (обведено красной рамкой). Ставим единицы измерения Максимум и минимум (Желательно симметричные) и одинаковые для вертикальной и горизонтальной осей. Таким образом, мы делаем мельче единичный отрезок и соответственно наблюдаем больший диапазон графика на диаграмме.И главную единицу измерения — значение 1.
  • Повторите тоже для горизонтальной оси.

Теперь, если поменять значения K и b , то получим новый график с фиксированной сеткой координат.

Построение графиков других функций

Теперь, когда у нас есть основа в виде таблицы и диаграммы, можно строить графики других функций, внося небольшие корректировки в нашу таблицу.

Квадратичная функция  y=ax2+bx+c

Выполните следующие действия:

  • В первой строке меняем заголовок
  • В третьей строке указываем коэффициенты и их значения
  • В ячейку A6 записываем обозначение функции
  • В ячейку B6 вписываем формулу =$B3*B5*B5+$D3*B5+$F3
  • Копируем её на весь диапазон значений аргумента вправо

Получаем результат

График квадратичной функции

Кубическая парабола  y=ax3

Для построения выполните следующие действия:

  • В первой строке меняем заголовок
  • В третьей строке указываем коэффициенты и их значения
  • В ячейку A6 записываем обозначение функции
  • В ячейку B6 вписываем формулу =$B3*B5*B5*B5
  • Копируем её на весь диапазон значений аргумента вправо

Получаем результат

График кубической параболы

Гипербола  y=k/x

Для построения гиперболы заполните таблицу вручную (смотри рисунок ниже). Там где раньше было нулевое значение аргумента оставляем пустую ячейку.

Далее выполните действия:

  • В первой строке меняем заголовок.
  • В третьей строке указываем коэффициенты и их значения.
  • В ячейку A6 записываем обозначение функции.
  • В ячейку B6 вписываем формулу =$B3/B5
  • Копируем её на весь диапазон значений аргумента вправо.
  • Удаляем формулу из ячейки I6.

Для корректного отображения графика нужно поменять для диаграммы диапазон исходных данных, так как в этом примере он больше чем в предыдущих.

  • Кликните диаграмму
  • На вкладке Работа с диаграммами перейдите в Конструктор и в разделе Данные нажмите Выбрать данные.
  • Откроется окно мастера ввода данных
  • Выделите мышкой прямоугольный диапазон ячеек A5:P6
  • Нажмите ОК в окне мастера.

Получаем результат

График гиперболы

Построение тригонометрических функций sin(x) и cos(x)

Рассмотрим пример построения графика тригонометрической функции y=a*sin(b*x).
Сначала заполните таблицу как на рисунке ниже

Таблица значений функции sin(x)

В первой строке записано название тригонометрической функции. В третьей строке прописаны коэффициенты и их значения. Обратите внимание на ячейки, в которые вписаны значения коэффициентов.

В пятой строке таблицы прописываются значения углов в радианах. Эти значения будут использоваться для подписей на графике. В шестой строке записаны числовые значения углов в радианах.

Их можно прописать вручную или используя формулы соответствующего вида =-2*ПИ(); =-3/2*ПИ(); =-ПИ(); =-ПИ()/2; …

В седьмой строке записываются расчетные формулы тригонометрической функции.

Запись расчетной формулы функции sin(x) в Excel

В нашем примере =$B$3*SIN($D$3*B6). Адреса B3 и D3 являются абсолютными. Их значения – коэффициенты a и b, которые по умолчанию устанавливаются равными единице.
После заполнения таблицы приступаем к построению графика.

Выделяем диапазон ячеек А6:J7. В ленте выбираем вкладку Вставка в разделе Диаграммы указываем тип Точечная и вид Точечная с гладкими кривыми и маркерами. 

Построение диаграммы Точечная с гладкими кривыми

В итоге получим диаграмму.

График sin(x) после вставки диаграммы

Теперь настроим правильное отображение сетки, так чтобы точки графика лежали на пересечении линий сетки. Выполните последовательность действий Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Сетка и включите три режима отображения линий как на рисунке.

Настройка сетки при построении графика

Теперь зайдите в пункт Дополнительные параметры линий сетки. У вас появится боковая панель Формат области построения. Произведем настройки здесь.

Кликните в диаграмме на главную вертикальную ось Y (должна выделится рамкой). В боковой панели настройте формат оси как на рисунке.

Кликните главную горизонтальную ось Х (должна выделится) и также произведите настройки согласно рисунку.

Настройка формата горизонтальной оси Х графика функции

Теперь сделаем подписи данных над точками. Снова выполняем Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Подписи данных – Сверху.

 У вас подставятся значения числами 1 и 0, но мы заменим их значениями из диапазона B5:J5.
Кликните на любом значении 1 или 0 (рисунок шаг 1) и в параметрах подписи поставьте галочку Значения из ячеек (рисунок шаг 2).

Вам будет сразу же предложено указать диапазон с новыми значениями (рисунок шаг 3). Указываем B5:J5.

Вот и все. Если сделали правильно, то и график будет замечательным. Вот такой.

Чтобы получить график функции cos(x), замените в расчетной формуле и в названии sin(x) на cos(x).

Аналогичным способом можно строить графики других функций. Главное правильно записать вычислительные формулы и построить таблицу значений функции. Надеюсь, что вам была полезна данная информация.

PS: Интересные факты про логотипы известных компаний

Дорогой читатель! Вы посмотрели статью до конца.
Получили вы ответ на свой вопрос?

Источник: https://tvojkomp.ru/kak-postroit-grafik-funktsii-v-microsoft-excel/

Построение графика линейной функции

Как построить линейную функцию

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое линейная функция, и с чем ее едят.

Если ты считаешь себя профи по части линейных функций, добро пожаловать. Но если нет, тебе стоит прочитать тему «Линейная функция».

Начнем с небольшой проверки:

Как выглядит линейная функция в общем виде (формула)?

Почему она называется линейной?

Как влияет коэффициент при   на график линейной функции?

Если ты сходу смог ответить на эти вопросы, продолжай читать. Если хоть один вопрос вызвал затруднения, прочти тему «Линейная функция».

Итак, ты уже умеешь обращаться с линейной функцией, анализировать ее график и строить график по точкам. Кстати, сколько нужно точек, чтобы построить график линейной функции?

Скажу сразу, эта тема настолько простая, что много нового ты здесь не выучишь. Но ты научишься не теряться во всяких нестандартных ситуациях.

Итак, дамы и господа, линейная функция:  .

Построение графика линейной функции: ты берешь два каких-либо икса, (например,   и  ), подставляешь их в формулу, находишь соответствующие игреки.

Затем отмечаешь эти две точки на координатной плоскости, прикладываешь линейку, и график готов. Просто и быстро, и ничего выдумывать не надо.

Но бывает, что функция задана по-другому, например, неявно. Сейчас разберем, как быстро справляться с такими ситуациями.

Разберем пример:

Постройте график уравнения  .

Ну а что тут сложного? Чтобы произвести построение графика линейной функции выражаем y и строим по точкам. Это да, но можно сделать проще и интересней.

Выясним, в какой точке эта прямая будет пересекать ось  . Что характерно для этой точке? Правильно,  . Так и пишем:

А теперь проделаем то же самое с другой осью: в какой точке график пересекает ось  ?

Вот и они – две точки графика. Осталось только приложить линейку:

Согласись, это было быстро и просто?

А теперь сам:

Ладно, а как еще можно задать функцию?

Ну, например словесно:

Прямая проходит через точку  , а ее угловой коэффициент равен  .

Ну что же, вспоминаем: что такое угловой коэффициент?

Это, с одной стороны, коэффициент при  , а с другой – это тангенс угла между прямой и осью  .

Вот это мы и используем когда делаем построение графика линейной функции: ставим точку  , и рисуем прямоугольный треугольник так, что один его катет параллелен оси  , а другой – перпендикулярен.

При этом второй катет должен быть ровно в   раз больше первого. Очень удобно в этом случае, чтобы первый катет был равен  , тогда второй будет равен  :

Теперь реши сам:

Прямая, уравнение которой имеет вид   (  неизвестно), проходит через точку  . Постройте ее.

Справился?

Должно получиться вот так:

Еще пример:

Произведи построение графика линейной функции и найди уравнение прямой, проходящей через точку   и параллельной прямой  . Строить график прямой   нельзя.

О, это что-то новенькое. Про параллельность прямых мы еще не учили.

Но как обычно, все просто. Нарисуем несколько параллельных прямых на координатной плоскости:

Что у них общего? Вообще, какие параметры важны для графиков? Конечно же, коэффициенты   и  . И сразу становится ясно: раз   отвечает за наклон, а наклон у них одинаковый (это же параллельные прямые, а ось   – секущая), значит, у них одинаковый коэффициент  !

Вернемся к задаче. Напомню условие:

Произведи построение графика линейной функции и найди уравнение прямой, проходящей через точку   и параллельной прямой  .

Итак, угловой коэффициент нашей прямой   равен угловому коэффициенту прямой , то есть  . Теперь задача становится точь в точь как мы решали до этого:

График пересекает ось ординат в точке  . Это и есть коэффициент  :

И снова пример для самостоятельного решения:
Произведи построение графика линейной функции и найди уравнение прямой, проходящей через точку   и параллельной прямой  . Строить график прямой   нельзя.

Ответ:  .

И еще один тип прямых. Самый простой из всех:

Хм… Даже на линейную функцию непохоже, чего это он самый простой?

А вот почему: достаточно небольшого преобразования, и получится самая обычная линейная функция:

Вот и все!

А, нет, не все… еще ведь ОДЗ: на ноль делить нельзя, бла бла бла…

Ладно, ничего сложного здесь нет:  . Это и есть все отличие от обычной прямой : просто надо будет выколоть из графика одну точку:  .

Теперь сам:  .

Ответ:  

Построение графика линейной функции. коротко о главном

График линейной функции – прямая линия. Прямую можно провести через две точки.

Чтобы построить график линейной функции вида  , нужно:

  • вычислить координаты любых двух точек (взять любые два значения аргумента   и вычислить соответствующие два значения  
  • для каждой пары   найти точку в системе координат, и провести прямую через эти две точки.

Пример для функции  :

Проще всего найти функцию, если аргумент:  .

Итак, первая точка имеет координаты  .

Теперь возьмем любое другое число в качестве  , например,  .

https://www.youtube.com/watch?v=zNq4iY9W1ls

Вторая точка имеет координаты  .

Угловой коэффициент   – это тангенс угла наклона прямой. Для его нахождения выберем две точки   и   на графике и построим прямоугольный треугольник с гипотенузой  

 .

Ну вот, ты увидел, как можно строить график любой линейной функции. Конечно, можно было бы придумать еще миллион «интересных случаев», но хватит терять время на эту халявную тему, пора уже перейти к более серьезным вещам.

Удачи!

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 

А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

 

Источник: https://youclever.org/book/postroenie-grafika-linejnoj-funktsii-1

Делаем просто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: