Как рассчитать параметры сетевого графика

АКак сделать сетевой график в Excel?

Как рассчитать параметры сетевого графика

Представим себе ситуацию развития проекта капитального строительства на производственном предприятии. Проект успешно инициирован и полным ходом идут работы по его планированию.

Сформирована и утверждена иерархическая структура работ, план по вехам принят. Разработан первичный вариант календарного плана. Поскольку задача оказалась достаточно масштабной, куратор принял решение о разработке еще и сетевой модели.

Расчет сетевого графика в прикладном аспекте его исполнения является предметом настоящей статьи.

Перед стартом моделирования

Методологический базис сетевого проектного планирования представлен на нашем сайте несколькими статьями. Я лишь сошлюсь на две из них. Это материалы, посвященные этапу сетевого планирования проекта в целом и непосредственно моделированию сетевого графика проекта.

Если в ходе повествования у вас будут возникать вопросы, просмотрите ранее представленные осмысления, основная суть методологии в них изложена. В настоящей статье мы рассмотрим небольшой пример локальной части комплекса строительно-монтажных работ в рамках значительной проектной реализации.

Расчеты и моделирование будем выполнять методом «вершина-работа» и классическим табличным способом («вершина-событие») с применением МКР (метода критического пути).

Построение сетевого графика мы начнем на основе первой итерации календарного плана, выполненного в форме диаграммы Ганта. Для целей наглядности предлагаю не учитывать отношения предшествования и максимально упростить последовательность действий.

Хотя на практике такое бывает редко, представим в нашем примере, что операции выстроены в последовательность вида «окончание-начало».

Ниже вашему вниманию представляются две таблицы: выписка из списка работ проекта (фрагмент из 15-ти операций) и список параметров сетевой модели, необходимый для представления формул.

Пример фрагмента списка операций инвестиционного проекта

Список параметров сетевой модели, подлежащих расчету

Пусть вас не пугает обилие элементов. Построение сетевой модели и расчет параметров достаточно просто выполнить.

Важно тщательно подготовиться, иметь под рукой иерархическую структуру работ, линейный график Ганта – в общем, все, что дает возможность определиться с последовательностью и взаимосвязями действий.

Еще в первые разы выполнения графика я рекомендую иметь перед собой формулы расчета требуемых значений. Они представлены ниже.

Что нам потребуется определить в ходе построения графика?

  1. Раннее начало текущей работы, в которую входят несколько связей от предыдущих операций. Выбираем максимальное значение из всех ранних окончаний предыдущих операций.
  2. Позднее окончание текущего действия, из которого выходят несколько связей. Выбираем минимальное значение из всех поздних начал последующих действий.
  3. Последовательность работ, формирующих критический путь. У этих действий раннее и позднее начала равны, как и раннее и позднее окончание соответственно. Резерв такой операции равен 0.
  4. Полные и частные резервы.
  5. Коэффициенты напряженности работ. Логику формул резервов и коэффициента напряженности работы мы рассмотрим в специальном разделе.

Шаг первый

Построение сетевого графика начинаем путем размещения прямоугольников задач последовательно слева-направо, применяя правила, описанные в предыдущих статьях.

При выполнении моделирования методом «вершина-работа» основным элементом диаграммы выступает семисегментный прямоугольник, в составе которого отражены параметры начала, окончания, длительности, резерва времени и наименования или номера операций. Схема представления ее параметров показана далее.

Схема изображения работы на сетевом графике

В соответствии с логикой последовательности операций с помощью специализированной программы, MS Visio или любого редактора размещаем образы работ в заданном выше формате. В первую очередь заполняем наименования выполняемых действий, их номера и длительность.

Рассчитываем раннее начало и раннее окончание с учетом формулы раннего начала текущего действия в условиях нескольких входящих связей. И так проходим до завершающей фрагмент операции. При этом, в нашем примере проекта тем же графиком Ганта не предусмотрены исходящие связи от операций 11, 12, 13 и 14.

«Подвешивать» их на сетевой модели недопустимо, поэтому мы добавляем фиктивные связи к конечной работе фрагмента, выделенные на рисунке синим цветом.

Шаг второй

Находим критический путь. Как известно, это путь, имеющий самую большую продолжительность действий, которые в него входят. Просматривая модель, мы выбираем связи между работами, имеющими максимальные значения раннего окончания действий. Намеченный критический путь выделяем стрелочками красного цвета. Полученный результат представлен на промежуточной схеме далее.

Шаг третий

Заполняем значения позднего окончания, позднего начала и полного резерва работ. Для выполнения расчета переходим к конечной работе и берем ее за последнюю операцию критического пути.

Источник: https://iiorao.ru/prochee/akak-sdelat-setevoj-grafik-v-excel.html

Расчет параметров сетевого графика — Студопедия

Как рассчитать параметры сетевого графика

Любая последовательность работ сетевого графика, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней работы, называется путем.

Путь сетевого графика, в котором начальная точка совпадает с исходным событием, а конечная – с завершающим событием, называется полным.

Путь от исходного события до любого взятого предшествует данному событию. Предшествующий событию путь, имеющий наибольшую длину, называется максимальным предшествующим. Он обозначается L1(i), а его продолжительность t[L1(i)].

Путь, соединяющий любое взятое событие с завершающим, называется последующим путем. Такой путь с наибольшей длиной называется максимально последующим и обозначается L2(i), а его продолжительность t[L2(i)].

Полный путь, имеющий наибольшую длину, называется критическим. Пути, отличные от критического, называются ненапряженными. Они имеют резервы времени.

Работы критического пути выделяются жирными линиями или двойными. Продолжительность критического пути считается главным параметром графика.

Рассмотрим алгоритм определения критического пути на сетевом графике, использующий алгоритм метода динамического программирования.

Упорядочим вершины графика по рангам и пронумеруем их с конца к началу. Это позволит совместить номера рангов с этапами попятного движения при отыскании условно-оптимальных управлений на последнем, двух последних и т.д. этапах. Нахождение критического пути разберем на примере сетевого графика, изображенного на рис. 10.7.

Рис. 10.7

Согласно принципу оптимальности Беллмана, оптимальное управление на каждом этапе определяется целью управления и состоянием на начало этапа. Состояние системы – это события, лежащие на рангах. Для совершения конечного события Х16 необходимо совершение предшествующих событий.

Возможные состояния системы на начало последнего этапа работ – совершение событий Х14 и Х15. В кружках у точек Х14 и Х15 поставим максимальную продолжительность работ на последнем этапе: Х14 5 , Х15 7 . Найдем максимальную продолжительность работ на двух последних этапах. Состояние системы на начало предпоследнего этапа обусловлено событием Х13.

Максимальная продолжительность пути, ведущая из Х13 к Х16 равна .

Следовательно, в кружке у события Х13 нужно поставить число 14 и т.д. Проводя этапы от конца к началу, узнаем длину критического пути tкр=96. Чтобы найти сам критический путь, процесс вычислений пройдем от начального события Х1 к конечному Х16.

Число 96 на первом этапе (от начала) мы получили, прибавив 16 к числу 80. Следовательно, критический путь на этом этапе будет равен (Х1, Х3). Число 80 = 16 + 64. Следовательно, критический путь на втором этапе проходит через работу (Х3, Х4) и т.д.

На графике он выделен жирной линией:

X1 – X3 – X4 – X7 – X8 – X10 – X11 – X12 – X13 – X15 – X16 .

Ранние и поздние сроки свершения событий. Резерв времени событий

Все пути, отличные по продолжительности от критического, располагают резервами времени. Разность между длиной критического пути и любого некритического называется полным резервом времени данного некритического пути и обозначается : .

Ранним сроком  свершения события  называется самый ранний момент времени, к которому завершаются все предшествующие этому событию работы, т.е. определяется продолжительностью максимального пути, предшествующего событию , т.е.:

или

Чтобы найти ранний срок совершения события j , нужно знать критический путь ориентированного подграфа, состоящего из множества путей, предшествующих данному событию j . Ранний срок исходного события равен нулю: tp(1)=0.

Поздним сроком  совершения события  называется самый поздний момент времени, после которого остается ровно столько времени, сколько необходимо для завершения всех работ, следующих за этим событием.

Самый поздний из допустимых сроков свершения события в сумме с продолжительностью выполнения всех последующих работ должен не превышать длины критического пути.

Поздний срок свершения события вычисляется как разность между продолжительностью  критического пути и продолжительностью максимального из последующих за событием путей :

или

Для событий, лежащих на критическом пути, ранний и поздний сроки свершения этих событий совпадают .

Разность между поздним и ранним сроками свершения события составляет резерв времени события : . Интервал  называется интервалом свободы события . Резерв времени события показывает максимально допустимое время, на которое можно отодвинуть момент его свершения, не увеличивая критический путь.

Так как сумма  определяет продолжительность пути максимальной длины, проходящего через это событие, то , т.е. резерв времени любого события  равен полному резерву времени максимального пути, проходящего через это событие .

При расчете временных параметров вручную удобно пользоваться четырехсекторным способом. При этом способе кружок сетевого графика, обозначающий событие, делится на четыре сектора.

В верхнем секторе ставится номер события; в левом – наиболее раннее из возможных время свершения события (); в правом – наиболее позднее из допустимых время свершения события ; в нижнем секторе — резерв времени данного события : .

Для вычисления раннего срока свершения событий: , применяем формулу , рассматривая события в порядке возрастания номеров, от начального к завершающему, по входящим в это событие работам.

Поздний срок свершения событий вычисляем по формуле , начиная с конечного события, для которого ( — номер конечного события), по выходящим из него работам.

Критические события имеют резерв времени равный нулю. Они и определяют критические работы и критический путь.

Пример 10.2. Пусть задан сетевой график, изображенный на рис. 10.8.

Рис. 10.8

Решение. Вычислим ранние сроки свершения событий :

Итак, завершающее событие может произойти лишь на 14-ый день от начала выполнения проекта. Это максимальное время, за которое могут быть выполнены все работы проекта. Оно определяется самым длинным путем. Ранний срок свершения работы 6 =14 совпадает с критическим временем кр — суммарной продолжительностью работ, лежащих на критическом пути.

Теперь можно выделить работы, принадлежащие критическому пути, возвращаясь от завершающего события к исходному. Из двух работ, входящих в событие 6 , , длина критического пути определила работы (5, 6), так как (5+56)=14. Поэтому работа (5, 6) – критическая и т.д. Работы (1, 3), (3, 4), (4, 5), (5, 6) определили критический путь: кр = (1-3-4-5-6).

Вычислим теперь поздние сроки свершения событий . Положим . Воспользуемся методом динамического программирования. Все расчеты будем вести от завершающего события к начальному событию. Поздние сроки свершения событий равны:

, так как после события 5 для завершения проекта нужно выполнить работу (5, 6) длительностью 3 дня. Из события 4 выходят две работы, поэтому:

Резерв времени для события 2 равен: . Резервы остальных событий равны нулю, так как эти события критические.

Ранние и поздние сроки начала и окончания работ. Определение резервов времени работ. Полный резерв времени работ.

Событие, непосредственно предшествующее данной работе, будем называть начальным и обозначать , а событие, непосредственно следующее за ней, – конечным и обозначать . Тогда любую работу будем обозначать . Зная сроки свершения событий, можно определить временные параметры работ.

Ранний срок начала работы  равен раннему сроку свершения события : .

Ранний срок окончания работы равен сумме раннего срока свершения начального события и продолжительности этой работы:  или .

Поздний срок окончания работы  совпадает с поздним сроком свершения ее конечного события : .

Поздний срок начала работы равен разности между поздним сроком свершения ее конечного события  и величиной этой работы:

.

Поскольку сроки выполнения работ находятся в границах, определяемых  и , то они могут иметь разного вида резервы времени.

Полный резерв времени работы — это максимальное время, необходимое для выполнения любой работы без превышения критического пути. Он вычисляется как разность между поздним сроком свершения конечного события  и ранним сроком времени для выполнения самой работы: . Так как , то .

Таким образом, полный резерв времени работы – это максимальное время, на которое можно увеличить ее продолжительность, не изменяя продолжительности критического пути. Все некритические работы имеют полный резерв времени отличный от нуля.

Свободный резерв времени работы – это запас времени, которым можно располагать при выполнении данной работы при условии, что начальное и конечное ее события наступят в свои ранние сроки: .

Свободный резерв присущ только данной работе, и его использование никак не повлияет на выполнение последующих работ. Только отдельные работы проекта обладают свободным резервом времени.

Независимый резерв времени — это запас времени, которым можно располагать при выполнении данной работы при условии, что начальное ее событие наступит в свой поздний срок, а конечное – в ранний срок:

. Использование независимого резерва времени на работе, которая его имеет, не влияет на ранние и поздние сроки свершения всех событий и работ сети. Если , то это показывает недостаток времени для выполнения данной работы к самому раннему сроку свершения ее конечного события, если начальное свершилось в поздний срок.

Независимый резерв времени работы (если он имеется) представляет собой остаток от ее полного резерва, если за счет последнего полностью сохранены резервы времени у начального события данной работы  и конечного : .

Величина независимого резерва времени работы показывает продолжительность вынужденного ожидания наступления конечного события данной работы.

Это позволяет снять с работы часть ресурсов с тем, чтобы перебросить их на другие более напряженные работы.

Для небольших проектов удобным дополнением к сетевому графику является линейный график (график Ганта).

На линейном графике каждая работа  изображается в привязке к оси времени  горизонтальным отрезком, длина которого в соответствующем масштабе равна продолжительности работы .

Начало каждой работы совпадает с ранним сроком свершения ее начального события. Работы изображаются в той же последовательности, что и на сетевом графике.

Пример 10.3. Рассмотрим сетевой график, заданный на рис. 10.8. Вычислим временные параметры работ.

Ранние сроки начала работ:

Ранние сроки окончания работ:

Поздние сроки окончания работ:

Поздние сроки начала работ:

Полные резервы времени работ:

Свободные резервы времени работ:

Независимые резервы времени работ:

, так как эти работы принадлежат критическому пути.

Составим линейный график Ганта. Начало каждой работы совпадает с ожидаемым сроком свершения ее начального события.

Работы изображены в той же последовательности, что и на сети.

Источник: https://studopedia.ru/3_37698_raschet-parametrov-setevogo-grafika.html

Практика построения сетевого графика

Как рассчитать параметры сетевого графика

Представим себе ситуацию развития проекта капитального строительства на производственном предприятии. Проект успешно инициирован и полным ходом идут работы по его планированию.

Сформирована и утверждена иерархическая структура работ, план по вехам принят. Разработан первичный вариант календарного плана. Поскольку задача оказалась достаточно масштабной, куратор принял решение о разработке еще и сетевой модели.

Расчет сетевого графика в прикладном аспекте его исполнения является предметом настоящей статьи.

Шаг четвертый

Четвертым шагом алгоритма сетевого моделирования и расчетов выполняется вычисление резервов и коэффициента напряженности.

Первым делом имеет смысл обратить внимание на полные резервы путей некритических направлений (R).

Они определяются путем вычитания из продолжительности критического пути временной длительности каждого из этих путей, пронумерованных на схеме итогового сетевого графика.

  • R пути под номером 1 = 120 – 101 = 19;
  • R пути под номером 2 = 120 – 84 = 36;
  • R пути под номером 3 = 120 – 104 = 16;
  • R пути под номером 4 = 120 – 115 = 5;
  • R пути под номером 5 = 120 – 118 = 2;
  • R пути под номером 6 = 120 – 115 = 5.

Дополнительные расчеты модели

Выполнение расчета общего резерва текущей операции производится путем вычитания из значения позднего начала раннего начала или из позднего окончания раннего окончания (см. схему расчета выше).

Общий (полный) резерв показывает нам возможность начала текущей работы позже или увеличения продолжительности на длительность резерва.

Но нужно понимать, что пользоваться полным резервом следует с большой осторожностью, потому что работы, стоящие от текущего события дальше остальных, могут оказаться без запаса времени.

Помимо полных резервов в сетевом моделировании оперируют также и частными или свободными резервами, которые представляют собой разницу между ранним началом последующей работы и ранним окончанием текущей.

Частный резерв показывает, есть ли возможность сдвинуть ранее начало операции вперед без ущерба для начала следующей процедуры и всему графику в целом.

Следует помнить, что сумма всех частных резервных значений тождественна полному значению резерва для рассматриваемого пути.

Главной задачей выполнения вычислений различных параметров является оптимизация сетевого графика и оценка вероятности выполнения проекта в срок.

Одним из таких параметров является коэффициент напряженности, который показывает нам уровень сложности реализовать работу в намеченный срок.

Формула коэффициента представлена выше в составе всех расчетных выражений, применяемых для анализа сетевого графика.

Коэффициент напряженности определяется как разница между единицей и частного от деления полного резерва времени работы на разницу длительности критического пути и особого расчетного значения.

Это значение включает ряд отрезков критического пути, совпадающих с максимально возможным путем, к которому может быть отнесена текущая операция (i-j).

Далее помещен расчет частных резервов и коэффициентов напряженности работ для нашего примера.

Таблица расчета частных резервов и коэффициента напряженности

Коэффициент напряженности варьируется от 0 до 1,0. Значение 1,0 устанавливается для работ, находящихся на критическом пути.

Чем ближе значение некритической операции к 1,0, тем труднее удержаться в плановых сроках ее реализации.

После того, как значения коэффициента по всем действиям графика посчитаны, операции, в зависимости от уровня этого параметра, могут быть отнесены к категории:

  • критической зоны (Кн более 0,8);
  • подкретической зоны (Кн более или равно 0,6, но менее или равно 0,8);
  • резервной зоны (Кн менее 0,6).

Оптимизация сетевой модели, нацеленная на сокращение общей продолжительности проекта, как правило, обеспечивается следующими мероприятиями.

  1. Перераспределение ресурсов в пользу наиболее напряженных процедур.
  2. Снижение трудоемкости операций, расположенных на критическом пути.
  3. Распараллеливание работ критического пути.
  4. Переработка структуры сети и состава операций.

Использование табличного метода

Общепризнанные ПП календарного планирования (MS Project, Primavera Suretrack, OpenPlan и т.п.) способны вычислять ключевые параметры сетевой модели проекта.

Мы же в настоящем разделе табличным методом выполним настройку подобного расчета обычными средствами MS Excel. Для этого возьмем наш пример фрагмента проектных операций проекта в области СМР.

Расположим основные параметры сетевого графика в столбах электронной таблицы.

Модель расчета параметров сетевого графика табличным способом

Преимуществом выполнения расчетов табличным способом является возможность простой автоматизации вычислений и избежание массы ошибок, связанных с человеческим фактором.

Красным цветом будем выделять номера операций, располагающихся на критическом пути, а синим цветом отметим расчетные позиции частных резервов, превышающих нулевое значение.

Разберем пошагово расчет параметров сетевого графика по основным позициям.

  1. Ранние начала операций, следующих за текущей работой. Алгоритм расчета настраиваем на выбор максимального значения из раннего времени окончания нескольких альтернативных предыдущих действий. Взять, например, операцию под номером 13. Ей предшествуют работы 6, 7, 8. Из трех ранних окончаний (71, 76, 74 соответственно) нам нужно выбрать максимальное значение – 76 и проставить его в качестве раннего начала операции 13.
  2. Критический путь. Выполняя процедуру расчета по пункту 1 алгоритма, мы доходим до конца фрагмента, найдя значение продолжительности критического пути, которая в нашем примере составила 120 дней. Значения наибольших ранних окончаний среди альтернативных действий обозначают операции, лежащие на критическом пути. Отмечаем эти операции красным цветом.
  3. Поздние окончания операций, предшествующих текущей работе. Начиная с концевой работы начинаем движение в обратную сторону от действий с большими номерами к операциям с меньшими. При этом из нескольких альтернатив исходящих работ выбираем наименьшее знание позднего начала. Поздние начала вычисляем как разницу между выбранными значениями поздних окончаний и продолжительности операций.
  4. Резервы операций. Вычисляем полные (общие) резервы как разницу между поздними началами и ранними началами либо между поздними окончаниями и ранними окончаниями. Значения частных (свободных) резервов получаем в результате вычитания из числа раннего начала следующей операции раннего окончания текущей.

Мы рассмотрели практические механизмы составления сетевого графика и расчета основных параметров временной продолжительности проекта.

Таким образом, вплотную приблизились к исследованию возможностей анализа, проводимого с целью оптимизации сетевой модели и формирования непосредственно плана действий по улучшению ее качества.

Настоящая тема занимает немного места в комплексе знаний проект-менеджера и не так уж и сложна для восприятия. Во всяком случае, каждый РМ обязан уметь воспроизводить визуализацию графика и выполнять сопутствующие расчеты на хорошем профессиональном уровне.

Источник: http://projectimo.ru/planirovanie-proekta/primer-postroeniya-setevogo-grafika.html

Делаем просто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: