Как решать по формуле Крамера

Содержание
  1. Метод Крамера
  2. В чем заключается метод Крамера
  3. Приёмы для вычисления определителя матрицы
  4. Решение систем уравнений методом Крамера
  5. Метод Крамера для решения СЛАУ: алгоритм, примеры задач
  6. Метод Крамера — вывод формул
  7. Алгоритм решения СЛАУ методом Крамера
  8. Примеры решения СЛАУ методом Крамера
  9. Метод Крамера решения систем линейных уравнений
  10. Три случая при решении систем линейных уравнений
  11. Примеры решения систем линейных уравнений методом Крамера
  12. Применить метод Крамера самостоятельно, а затем посмотреть решения
  13. Продолжаем решать системы методом Крамера вместе
  14. Метод Крамера – теорема, примеры решений
  15. Вывод формулы Крамера
  16. Метод Крамера – теоремы
  17. Теорема замещения
  18. Теорема аннулирования
  19. Алгоритм решения уравнений методом Крамера
  20. Шаг 1. Вычисляем главный определитель матрицы
  21. Шаг 2. Находим определители
  22. Шаг 3. Вычисляем неизвестные переменные
  23. Шаг 4. Выполняем проверку
  24. Порядок решения однородной системы уравнений
  25. Метод Крамера — правило и примеры решения систем линейных уравнений
  26. Ключевые нюансы
  27. Практическое применение
  28. Разнообразие математических подходов
  29. Помощь онлайн-калькуляторов
  30. Актуальные примеры решения

Метод Крамера

Как решать по формуле Крамера

Метод Крамера или так называемое правило Крамера – это способ поиска неизвестных величин из систем уравнений. Его можно использовать только если число искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть образуемая из системы основная матрица должна быть квадратной и не содержать нулевых строчек, а также если её детерминант не должен являться нулевым.

Теорема 1

Теорема КрамераЕсли главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна, причём решение у неё существует единственное. Решение такой системы вычисляется через так называемые формулы Крамера для решения систем линейных уравнений: $x_i = \frac{D_i}{D}$

В чем заключается метод Крамера

Суть метода Крамера в следующем:

  1. Чтобы найти решение системы методом Крамера, первым делом вычисляем главный определитель матрицы $D$. Когда вычисленный детерминант основной матрицы при подсчёте методом Крамера оказался равен нулю, то система не имеет ни одного решения или имеет нескончаемое количество решений. В этом случае для нахождения общего или какого-либо базисного ответа для системы рекомендуется применить метод Гаусса.
  2. Затем нужно заменить крайний столбец главной матрицы на столбец свободных членов и высчитать определитель $D_1$.
  3. Повторить то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ — номер крайнего справа столбца.
  4. После того как найдены все детерминанты $D_1$…$D_n$, можно высчитать неизвестные переменные по формуле $x_i = \frac{D_i}{D}$.
  • Курсовая работа 470 руб.
  • Реферат 250 руб.
  • Контрольная работа 190 руб.

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей — со знаком минус.

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Решение систем уравнений методом Крамера

Применим метод Крамера для системы из 2 уравнений и двумя искомыми величинами:

$\begin{cases} a_1x_1 + a_2x_2 = b_1 \\ a_3x_1 + a_4x_2 = b_2 \\ \end{cases}$

Отобразим её в расширенной форме для удобства:

$A = \begin{array}{cc|c} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_1 \\ \end{array}$

Найдём определитель основной матрицы, также называемый главным определителем системы:

$D = \begin{array}{|cc|} a_1 & a_2 \\ a_3 & a_4 \\ \end{array} = a_1 \cdot a_4 – a_3 \cdot a_2$

Если главный определитель не равен нулю, то для решения слау методом Крамера необходимо высчитать ещё парочку определителей от двух матриц с заменёнными столбцами основной матрицы на строчку свободных членов:

$D_1 = \begin{array}{|cc|} b_1 & a_2 \\ b_2 & a_4 \\ \end{array} = b_1 \cdot a_4 – b_2 \cdot a_4$

$D_2 = \begin{array}{|cc|} a_1 & b_1 \\ a_3 & b_2 \\ \end{array} = a_1 \cdot b_2 – a_3 \cdot b_1$

Теперь найдём неизвестные $x_1$ и $x_2$:

$x_1 = \frac {D_1}{D}$

$x_2 = \frac {D_2}{D}$

Пример 1

Метод Крамера для решения СЛАУ с основной матрицей 3 порядка (3 x 3) и тремя искомыми.

Решите систему уравнений:

$\begin{cases} 3x_1 – 2x_2 + 4x_3 = 21 \\ 3x_1 +4x_2 + 2x_3 = 9\\ 2x_1 – x_2 — x_3 = 10 \\ \end{cases}$

Сосчитаем главный детерминант матрицы пользуясь вышеизложенным под пунктом номер 1 правилом:

$D = \begin{array}{|ccc|} 3 & -2 & 4 \\3 & 4 & -2 \\ 2 & -1 & 1 \\ \end{array} = 3 \cdot 4 \cdot (-1) + 2 \cdot (-2) \cdot 2 + 4 \cdot 3 \cdot (-1) – 4 \cdot 4 \cdot 2 – 3 \cdot (-2) \cdot (-1) — (-1) \cdot 2 \cdot 3 = — 12 – 8 -12 -32 – 6 + 6 = — 64$

А теперь три других детерминанта:

$D_1 = \begin{array}{|ccc|} 21 & 2 & 4 \\ 9 & 4 & 2 \\ 10 & 1 & 1 \\ \end{array} = 21 \cdot 4 \cdot 1 + (-2) \cdot 2 \cdot 10 + 9 \cdot (-1) \cdot 4 – 4 \cdot 4 \cdot 10 – 9 \cdot (-2) \cdot (-1) — (-1) \cdot 2 \cdot 21 = — 84 – 40 – 36 – 160 – 18 + 42 = — 296$

$D_2 = \begin{array}{|ccc|} 3 & 21 & 4 \\3 & 9 & 2 \\ 2 & 10 & 1 \\ \end{array} = 3 \cdot 9 \cdot (- 1) + 3 \cdot 10 \cdot 4 + 21 \cdot 2 \cdot 2 – 4 \cdot 9 \cdot 2 – 21 \cdot 3 \cdot (-1) – 2 \cdot 10 \cdot 3 = — 27 + 120 + 84 – 72 + 63 – 60 = 108$

$D_3 = \begin{array}{|ccc|} 3 & -2 & 21 \\ 3 & 4 & 9 \\ 2 & 1 & 10 \\ \end{array} = 3 \cdot 4 \cdot 10 + 3 \cdot (-1) \cdot 21 + (-2) \cdot 9 \cdot 2 – 21 \cdot 4 \cdot 2 — (-2) \cdot 3 \cdot 10 — (-1) \cdot 9 \cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = — 60$

Найдём искомые величины:

$x_1 = \frac{D_1} {D} = \frac{- 296}{-64} = 4 \frac{5}{8}$

$x_2 = \frac{D_1} {D} = \frac{108} {-64} = — 1 \frac {11} {16}$

$x_3 = \frac{D_1} {D} = \frac{-60} {-64} = \frac {15} {16}$

Источник: https://spravochnick.ru/matematika/metod_kramera/

Метод Крамера для решения СЛАУ: алгоритм, примеры задач

Как решать по формуле Крамера

В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.

Определение 1

Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.

Метод Крамера — вывод формул

Пример 1

Найти решение системы линейных уравнений вида:

a11x1+a12x2+…+a1nxn=b1a21x1+a22x2+…+a2nxn=b2⋮an1x1+an2x2+…+annxn=bn

В этой системе x1, x2, …, xn — неизвестные переменные,

aij, i=1, 2, …, n; j= 1, 2, …, n — числовые коэффициенты,

b1, b2, …, bn — свободные члены. 

Решение такой системы линейных алгебраических уравнений — набор значений x1, x2, …, xn, при которых все уравнения системы становятся тождественными.

Матричный вид записи такой системы линейных уравнений:

AX=B, где A=a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann— основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;

B=b1b2⋮bn — матрица-столбец свободных членов;

X=x1x2⋮xn— матрица-столбец неизвестных переменных.

После того как мы найдем неизвестные переменные x1, x2, …, xn, матрица X=x1x2⋮xn становится решением системы уравнений, а равенство AX=B обращается в тождество.

Метод Крамера основан на 2-х свойствах определителя матрицы:

  • Определитель квадратной матрицы A=aij, i=1, 2, …, n; j=1, 2, …, n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann=ap1×Ap1+ ap2×Ap2+…+apn×Apn=a1q×A1q+ a2q×A2q+…+anq×Anq

  • Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:

ap1×Ap1+ ap2×Ap2+…+apn×Apn=0a1q×A1q+ a2q×A2q+…+anq×Anq=0

p=1, 2, …, n, q=1, 2, …, n p не равно q

Приступаем к нахождению неизвестной переменной x1:

  • Умножаем обе части первого уравнения системы на А11, обе части второго уравнения на А21и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А:

A11a11x1+A11a12x2+…+A11a1nxn=A11b1A21a21x1+A21a22x2+…+A21x2nxn=A21b2⋯An1an1x1+An1an2x2+…+An1annxn=An1bn

  • Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных  , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:

x1(A11a11+A21a21+…+An1an1)++x2(A11a12+A21a22+…+An1an2)++…++xn(A11a1n+A21a2n+…+An1ann)==A11b1+A21b2+…+An1bn

Если воспользоваться свойствами определителя, то получится:

А11а11+А21а21+…+Аn1an1=АА11а12+А21а22+…+Аn1аn2=0⋮A11a1n+A21a2n+…+An1ann=0

A11b1+A21b2+…+An1bn=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

Предыдущее равенство будет иметь следующий вид:

x1A=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann.

Откуда

x1=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯annA

Таким же образом находим все оставшиеся неизвестные переменные.

Если обозначить

∆=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann, ∆x1=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann,

∆x2=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann, … ∆xn=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann.

то получаются формулы для нахождения неизвестных переменных по методу Крамера:

x1=∆x1∆, x2=∆x2∆, …, xn=∆xn∆.

Алгоритм решения СЛАУ методом Крамера

  • Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
  • Найти определители

∆x1=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

∆x2=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

∆xn=b1a12⋯a1nb2a22⋯a2n⋮⋮⋮⋮bnan2⋯ann

Эти определители являются определителями матриц, которые получены из матрицы А путем замены k-столбца на столбец свободных членов.

Опиши задание

  • Вычислить неизвестные переменные при помощи формул:

x1=∆x1∆, x2=∆x2∆, …, xn=∆xn∆.

  • Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.

Примеры решения СЛАУ методом Крамера

Пример 2

Найти решение неоднородной системы линейных уравнений методом Крамера:

3×1-2×2=562×1+3×2=2

Как решать?

Основная матрица представлена в виде 3-223.

Мы можем вычислить ее определитель по формуле: 

a11a12a21a22=a11×a22-a12×a21: ∆=3-223=3×3-(-2)×2=9+4=13

Записываем определители ∆x1 и ∆x2. Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆x1=56-223

По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:

∆x2=35622

Находим эти определители:

∆x1=56-223=56×3-2(-2)=52+4=132

∆x2=35622=3×2-56×2=6-53=133

Находим неизвестные переменные по следующим формулам 

x1=∆x1∆, x2=∆x2∆

x1=∆x1∆=13213=12

x2=∆x2∆=313=13

Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:

312-213=56212+313=2⇔56=562=2

Оба уравнения превращаются в тождества, поэтому решение верное.

Ответ: x1=12, x2=13

Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.

Пример 3

Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:

2y+x+z=-1-z-y+3x=-1-2x+3z+2y=5

За основную матрицу нельзя брать 211-1-1-3-232.

Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:

x+2y+z=-13x-y-z=-1-2x+2y+3z=5

С этого момента основную матрицу хорошо видно:

1213-1-1-223

Вычисляем ее определитель:

∆=1213-1-1-223=1×(-1)×3+2×(-1)(-2)+1×2×3-1(-1)(-2)-2×3×3—1(-1)×2=-11

Записываем определители и вычисляем их:

∆x=-121-1-1-1523=(-1)(-1)×3+2(-1)×5+1(-1)×2-1(-1)×5-2(-1)×3—1(-1)×2=0

∆y=1-113-1-1-253=1(-1)×3+(-1)(-1)(-2)+1×3×5-1(-1)(-2)-(-1)—1(-1)×2=22

∆z=12-13-1-1-225=1(-1)×5+2(-1)(-2)+(-1)×3×2-(-1)(-1)(-2)-2×3×5—1(-1)×2=-33

Находим неизвестные переменные по формулам:

x=∆x∆, y=∆y∆, z=∆z∆.

x=∆x∆=0-11=0

y=∆y∆=22-11=-2

z=∆z∆=-33-11=3

Выполняем проверку — умножаем основную матрицу на полученное решение 0-23:

1213-1-1-223×0-23=1×0+2(-2)+1×33×0+(-1)(-2)+(-1)×3(-2)×0+2(-2)+3×3=-1-15

Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.

Ответ: x=0, y=-2, z=3

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не получается написать работу самому?

Доверь это кандидату наук!

Источник: https://Zaochnik.com/spravochnik/matematika/issledovanie-slau/metod-kramera/

Метод Крамера решения систем линейных уравнений

Как решать по формуле Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения  и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей.

В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами.

Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

.                         (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….

,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Правильное решение и ответ.

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное.

На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов.

То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8.  Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Источник: https://function-x.ru/systems_kramer.html

Метод Крамера – теорема, примеры решений

Как решать по формуле Крамера

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Вывод формулы Крамера

Пусть дана система линейных уравнений такого вида:

где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения  при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается , где

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .

Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи  метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

, здесь – 1, 2, …, n; – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

,

,

где – 1, 2, …, n; – 1, 2, 3, …, n. .

Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:

.

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

И предыдущее равенство уже выглядит так:

Откуда и получается .

Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

Важно! Когда работу писать становится сложно, можно обратиться с вопросом к экспертам. Это поможет сделать работу быстро.

Подробнее

Откуда получается .

Аналогично находятся все остальные неизвестные переменные.

Если обозначить:

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

, , .

Замечание.

Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут

Метод Крамера – теоремы

Прежде чем решать уравнение , необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Теорема

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

Например,

=

где – алгебраические дополнения элементов первого столбца изначального определителя:

Теорема аннулирования

Теорема

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Например:

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

, , .

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

Для начала вычисляем главный определитель (определитель системы):

Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.

В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

и

Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

,

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

(1)

Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:

Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

После этого можно записать равенство:

(2)

Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:

 где

,

Если  , тогда в результате получаем формулы Крамера:

= , = , =

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

(3)

Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.

Теорема

Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера

Источник: https://NauchnieStati.ru/spravka/resheneie-sistem-metodom-kramera/

Метод Крамера — правило и примеры решения систем линейных уравнений

Как решать по формуле Крамера

Широко востребованный метод Крамера активно используется специалистами для решения распространённых алгебраических уравнений (СЛАУ). Итоговая точность полученного результата обусловлена применением определённой математической матрицы, а также некоторыми вспомогательными ограничениями, которые неизбежно накладываются во время доказательства конкретной теоремы.

Набором выражений вида yr 2 x1+ yr 2 x2 +… yr n xn = b r при r =1, 2,…, m принято называть универсальную систему линейных алгебраических уравнений. В этом случае также присутствуют определённые коэффициенты, которые могут принадлежать множеству W -действительных чисел, от неизвестных x 1… xn.

Чаще всего в роли действенных чисел выступают yr и br. Каждое из представленных значений называется линейным уравнением.

Элементарные коэффициенты при неизвестных — это yr, а вот bi — свободные коэффициенты уравнений. Стандартный n -мерный вектор k ° = (k 1°, k 2°,…, k n°) называют решением системы.

При правильной подстановке в систему вместо неизвестных элементов каждая из строчек становится верным равенством.

Если у системы присутствует минимум одно решение, то она называется совместной. Речь касается несовместного примера только в том случае, если многочисленные алгоритмы решения совпадают с пустым множеством.

Классическая формула Крамера используется в том случае, если необходимо отыскать верное решение для линейных уравнений. Для получения достоверного результата матрицы должны быть исключительно квадратными.

А на практике такой подход означает одинаковое количество уравнений и неизвестных в системе.

Ключевые нюансы

Востребованный в математике метод Крамера для решения систем линейных уравнений можно успешно использовать только в том случае, если ученик хорошо понимает, что такое матрица алгебраических примеров и каким образом она выписывается.

В противном случае будет сложно избежать распространённых ошибок. Если необходимые навыки имеются, то в итоге остаётся только правильно запомнить формулы, которые определяют метод Крамера.

Чтобы лучше усвоить все тонкости этой темы, необходимо воспользоваться следующими обозначениями:

  • Главный определитель совместности матрицы системы — Det.
  • Определитель матрицы, который получен из основного элемента — deti. Если ученик попробует заменить последний столбец матрицы, задействовав для этого первые части линейных алгебраических уравнений, тогда следует использовать понятие deti.
  • Для количества неизвестных и уравнений в системе используется символ n.

Если учесть все перечисленные нюансы, то в итоге правило Крамера для вычисления компонентов n -мерного вектора можно записать в следующей формулировке: xi = deti / Det. В этом случае DET максимально отличен от нуля.

Практическое применение

Для решения многих математических задач принято использовать теорему Кронекера — Капелли.

Если основной определитель G главной матрицы, которая была составлена за счёт коэффициентов уравнений, не равен нулю, тогда система уравнений будет совместна. Но такое решение является единственным.

Для поиска верного результата принято вычислять систему через формулу Крамера для линейных уравнений: x i = D i / D.

Метод Крамера основан на нескольких основных нюансах, которые в сочетании друг с другом дают отличный результат:

  • Если решено найти правильное исчисление системы по методике талантливого учёного, тогда первым делом обязательно вычисляют главный определитель обращения матрицы (J). Если при подсчёте детерминант основной матрицы оказался равен нулю, то такая система просто не имеет решения, либо речь касается нескончаемого количества решений. В такой ситуации получить достоверный результат можно только благодаря универсальному методу Гаусса.
  • На втором этапе ученику нужно постараться заменить крайний столбец главной матрицы столбцом свободных членов, чтобы отыскать определитель (J 1).
  • Остаётся повторить аналогичные действия для всех оставшихся столбцов. За счёт этого можно получить определители от J 1 до J n. В этом случае символ n указывает на номер последнего справа столбца.
  • Как только будут найдены абсолютно все детерминанты, нужно постараться высчитать неизвестные переменные по элементарной формуле: х i = B i / B.

Разнообразие математических подходов

Немного иные приёмы используются в том случае, когда предстоит работать с определителем матрицы. Если нужно рассчитать правильные данные на основе конструкции с соразмерностью больше чем 2 на 2, тогда можно использовать сразу несколько проверенных временем способов:

  • Метод Гаусса. Некоторые специалисты привыкли называть это математическое направление понижением порядка основного определителя. Несколько простых действий помогают преобразить матрицу и привести её к треугольному виду. Все комплексные числа, которые расположены на основной диагонали, перемножаются. Но при таком поиске определителя запрещено выполнять арифметические действия со строчками или столбцами без предварительного вынесения чисел как множителя/делителя. Предварительно умножают вычитаемую строку на нулевой множитель, а уже потом вычитают и складывают все элементы между собой. Конечный знак у обратной матрицы подвергают изменениям только в том случае, когда происходит перестановка столбцов или строчек.
  • Правило Саррюса. Суть метода треугольников в том, чтобы ученик мог при вычислении дискриминанта и определителя произведения всех чисел, которые были соединены одной линией, записывать примеры только с положительным значением. Это утверждение идеально подходит для матриц размером 3х3. Но если следовать всем нормам правила Саррюса, то первым делом переписывают саму матрицу, а рядом с ней располагают первый и второй столбец. В итоге через сформированную конструкцию проводятся диагональные линии. Члены матрицы, которые расположены на основной диагонали или на параллельной ей плоскости всегда записываются со знаком +, а вот элементы, лежащие на побочной диагонали, имеют знак -.
  • Если ученик решит использовать универсальный метод Крамера СЛАУ, для которого свойственно присутствие сразу четырёх неизвестных, тогда лучше всего выполнить комбинацию с технологией Гаусса. В этом случае можно гарантированно отыскать детерминант через поиск миноров.

Для каждого направления свойственны свои нюансы и правила теории, которые должен знать каждый ученик. В противном случае решить правильно поставленную задачу практически невозможно.

Помощь онлайн-калькуляторов

Созданные программистами программы пользуются огромным спросом даже среди опытных математиков, так как всего за несколько минут можно правильно решить задачу.

Многофункциональные онлайн-калькуляторы с подробным решением по методу Крамера позволяют быстро и качественно решить целую систему различных уравнений.

Для этого пользователю необходимо правильно указать количество неизвестных величин.

Для быстрого переключения в уравнении с положительных знаков на отрицательные нужно вводить соответствующие числа. Если в задаче отсутствует коэффициент, то на его место в калькулятор вводят ноль. Указывать можно не только числа, но и дроби. К примеру: 4,7 или 1/5.

На специальных сайтах можно решать различные системы уравнений по методу талантливого учёного Крамера в режиме онлайн. Решение будет отображено на экране моментально, к тому же его можно расширить.

При решении системы уравнений крайне важно найти определители и присоединить сразу несколько разных матриц.

Для существенного сокращения решения эта математическая операция упрощена, что существенно облегчает работу учеников.

Актуальные примеры решения

Единственность арифметических действий с системой при её совместимости обеспечивает условие неравенства нулю основного определителя. Но если сумма точек, которые были возведены в квадрат, строго положительна, то полученный СЛАУ будет несовместим с квадратной матрицей. Такая ситуация может произойти тогда, когда минимум один из присутствующих элементов deti отличён от нуля.

В качестве примера можно рассмотреть задачу, по условиям которой необходимо решить трёхмерную систему ЛАУ, используя для этого формулы Крамера:

  • x1 + 2 x2 + 4 x3 = 31.
  • 5 x1 + x2 + 2 x3 = 29.
  • 3 x1 — x2 + x3 =10.

Для решения следует выписать матрицу системы построчно. Строку матрицы принято обозначать символом i. После этого можно получить формулу A1=(1 2 4), A2=(5 1 2), A3=(3 -1 1).

Существование значения b = (31 29 10) помогает отобразить столбец свободных коэффициентов.

Основной определитель Det будет соответствовать следующим данным: a11 a22 a33 + a12 a23 a31 + a31 a21 a32 — a13 a22 a31 — a11 a32 a23 — a33 a21 a12 = 1—20 + 12 — 12 + 2—10 = -27.

В соответствии с формулой Крамера можно найти: x1 = -81/(-27) = 3, x2 = -108/(-27) = 4, x3 = -135/(-27) = 5. Если всё сделать правильно, то можно получить следующий ответ: x° = (3,4,5). Если руководствоваться базовыми понятиями, то многочисленные средства Крамера для решения сложных линейных уравнений можно использовать опосредованно.

Нелишним также будет рассмотреть следующий пример, где ученику нужно определить то, при каких показателях параметра F неравенство формулы | F x — y — 4|+|x + F y + 4|

Источник: https://nauka.club/matematika/metod-kramera.html

Делаем просто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: