- Примеры решения дифференциальных уравнений с ответами
- Примеры решения дифференциальных уравнений
- Дифференциальные уравнения (ДУ) — методы и примеры решения уравнений разного порядка
- Дифференциальные уравнения первого порядка
- Простейшие ДУ первого порядка
- Задача №1
- ДУ с разделяющимися переменными
- Задача №2
- Линейные неоднородные ДУ первого порядка
- Задача №3
- Задача Коши для ДУ
- Задача №4
- Дифференциальные уравнения Бернулли
- Задача №5
- Дифференциальные уравнения второго порядка
- Линейные однородные ДУ второго порядка с постоянными коэффициентами
- Задача №6
- Линейные неоднородные ДУ второго порядка с постоянными коэффициентами
- Задача №7
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения первого порядка
- Как решать дифференциальные уравнения первого порядка
- Уравнения с разделяющимися переменными
- Уравнения, приводящиеся к уравнениям с разделяющимися переменными
- Однородные уравнения
- Уравнения, приводящиеся к однородным
- Обобщенные однородные уравнения
- Линейные дифференциальные уравнения
- Уравнения Бернулли
- Уравнения Риккати
- Уравнения Якоби
- Уравнения в полных дифференциалах
- Интегрирующий множитель
- Уравнения, допускающие решение относительно производной y'
- Уравнения, допускающие разложение на множители
- Уравнения, не содержащие x и y
- Уравнения, не содержащие x или y
- Уравнения Клеро
- Уравнения Лагранжа
- Уравнения, приводящиеся к уравнению Бернулли
Примеры решения дифференциальных уравнений с ответами
Дифференциальные уравнения не так сильно отличаются от привычных уравнений, где необходимо найти переменную x, как кажется на первый взгляд. Всё различие лишь в том, что в дифференциальных уравнениях мы ищем не переменную, а функцию у(х), с помощью которой можно обратить уравнение в равенство.
Теорема
Дифференциальное уравнение – это уравнение, содержащее саму функцию (y=y(x)), производные функции или дифференциалы (y′, y″) и независимые переменные (наиболее распространённая – х). Обыкновенным дифференциальным уравнением называют уравнение, в котором содержится неизвестная функция под знаком производной или под знаком дифференциала.
Алгоритм
Чтобы решить ДУ, необходимо найти множество всех функций, которые удовлетворяют данному уравнению. Это множество в большинстве случаев выглядит следующим образом:y=f(x; С), где С – произвольная постоянная.
Проверить решённое ДУ можно, подставив найденную функцию в изначальное уравнение и убедившись, что уравнение обращается в тождество (равенство).
Примеры решения дифференциальных уравнений
Пример 1
Задание
Решить дифференциальное уравнение xy’=y.
Решение
В первую очередь, необходимо переписать уравнение в другой вид. Пользуясь
переписываем дифференциальное уравнение, получаем
Дальше смотрим, насколько реально разделить переменные, то есть путем обычных манипуляций (перенос слагаемых из части в часть, вынесение за скобки и пр.) получить выражение, где «иксы» с одной стороны, а «игреки» с другой. В данном уравнении разделить переменные вполне реально, и после переноса множителей по правилу пропорции получаем
Далее интегрируем полученное уравнение:
В данном случае интегралы берём из таблицы:
После того, как взяты интегралы, дифференциальное уравнение считается решённым. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения.
То есть,
– это общий интеграл. Также для удобства и красоты, его можно переписать в другом виде: y=Cx, где С=Const
Ответ
y=Cx, где С=Const.
Пример 2
Задание
Найти частное решение дифференциального уравнения
.
Решение
Действуем по тому же алгоритму, что и в предыдущем решении.
Важно! Когда работу писать становится сложно, можно обратиться с вопросом к экспертам. Это поможет сделать работу быстро.
Подробнее
Переписываем производную в нужном виде, разделяем переменные и интегрируем полученное уравнение:
Получили общий интеграл.Далее, воспользуемся свойством степеней, выразим у в «общем» виде и перепишем функцию:
Если – это константа, то
– тоже некоторая константа, заменим её буквой С:
– убираем модуль и теперь константа может принимать и положительные, и отрицательные значения.
Получаем общее решение:
где С=const.
Ответ
где С=const.
Пример 3
Задание
Решить дифференциальное уравнение
Решение
В первую очередь необходимо переписать производную в необходимом виде:
Второй шаг – разделение переменных и перенос со сменой знака второго слагаемого в правую часть:
После разделения переменных, интегрируем уравнение, как в примерах выше.
Чтобы решить интегралы из левой части, применим метод подведения функции под знак дифференциала:
В ответе мы получили одни логарифмы и константу, их тоже определяем под логарифм.
Далее упрощаем общий интеграл:
Приводим полученный общий интеграл к виду: F(x,y)=C:
Чтобы ответ смотрелся красивее, обе части необходимо возвести в квадрат.
Ответ
Общий интеграл:
где С=const.
Пример 4
Задание
Найти частное решение дифференциального уравнения
удовлетворяющее начальному условию y(0)=ln2.
Решение
Первый шаг – нахождение общего решения. То, что в исходном уравнении уже находятся готовые дифференциалы dy и dx значительно упрощает нам решение.
Начинаем разделять переменные и интегрировать уравнение:
Мы получили общий интеграл и следующий шаг – выразить общее решение. Для этого необходимо прологарифмировать обе части. Знак модуля не ставим, т.к. обе части уравнения положительные.
Получаем общее решение:
где С=const
Далее необходимо найти частное решение, которое соответствует заданному начальному условию y(0)=ln2.
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:
Подставляем найденное значение константы C=1 в общее решение.
Ответ
Частное решение:
.
Пример 5
Задание
Решить дифференциальное уравнение
.
Решение
При внимательном разборе данного уравнения видно, что можно разделить переменные, что и делаем, после интегрируем:
В данном случае константу C считается не обязательным определять под логарифм.
Ответ
Общий интеграл:
Пример 6
Задание
Найти частное решение дифференциального уравнения
удовлетворяющее начальному условию y(1)=e. Выполнить проверку.
Решение
Как и в предыдущих примерах первым шагом будет нахождение общего решения. Для этого начинаем разделять переменные:
Интегрируем:
Общий интеграл получен, осталось упростить его. Упаковываем логарифмы и избавляемся от них:
Используя
можно выразить функцию в явном виде.
Общее решение:
где С=const.
Осталось найти частное решение, удовлетворяющее начальному условию y(1)=e.
Подставляем найденное значение константы C=1 в общее решение.
Ответ
Частное решение:
Проверка
Необходимо проверить, выполняется ли начальное условие:
Из равенства выше видно, что начальное условие y(1)=e выполнено.
Далее проводим следующую проверку: удовлетворяет ли вообще частное решение
дифференциальному уравнению. Для этого находим производную:
Подставим полученное частное решение
и найденную производную в исходное уравнение
0=0
Получено верное равенство, значит, решение найдено правильно.
Пример 7
Задание
Найти общий интеграл уравнения
Решение
Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:
Ответ
Общий интеграл:
Пример 8
Задание
Найти частное решение ДУ.
Решение
Данное ДУ допускает разделение переменных. Разделяем переменные:
Интегрируем:
Общий интеграл:
Найдем частное решение (частный интеграл), соответствующий заданному начальному условию
Подставляем в общее решение
Ответ
Частный интеграл:
Пример 9
Задание
Решить дифференциальное уравнение
Решение
Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:
Левую часть интегрируем по частям:
В интеграле правой части проведем замену:
Таким образом:
(здесь дробь раскладывается методом неопределенных коэффициентов)
Обратная замена:
Ответ
Общий интеграл:
где С=const.
Пример 10
Задание
Решить дифференциальное уравнение
Решение
Данное уравнение допускает разделение переменных.
Разделяем переменные и интегрируем:
Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:
Ответ
Общее решение:
где С=const.
Источник: https://NauchnieStati.ru/spravka/primery-resheniya-differenczialnyh-uravnenij-s-otvetami/
Дифференциальные уравнения (ДУ) — методы и примеры решения уравнений разного порядка
Многих людей, хоть как-то изучавших курс высшей математики в учебном заведении, приводит в ужас словосочетание «дифференциальные уравнения».
Согласно строгому научному определению в книгах – так именуются математические выражения, где в состав входят функция, ее производная или параметр.
Имеется достаточно большое количество типов этих равенств, рассмотрим подходы к их решению так, чтобы они были понятны даже для «чайников».
Дифференциальные уравнения первого порядка
Обыкновенное диффуравнение (ДУ) 1-го порядка задается относительно некой функции, имеющей вид у(х):
F(x,y(x),y´(x)) = 0,
здесь, F(x,y,y’) – это функция, задающаяся для трех аргументов (в этом примере для х, у и у’).Таково строгое математическое определение ДУ.
Для примера можно привести следующее уравнение:
xy'(x) — y(x)2 = 0
функция вида F(x,y,p) = xp — y2
Простейшие ДУ первого порядка
Общепринятый механизм нахождения решения таких выражений (чаще всего похожи на y' = f(x)) – это интегрирование левой и правой части такого уравнения на заданном промежутке Х.
После интегрирования получим такое выражение:
∫ y'dx = ∫ f(x)dx
Воспользовавшись свойствами, которые относятся к интегральным выражениям, упростим выражение до вида:
y = F(x) + N
здесь, F(x) – это первообразная от функции f(x) на заданном интервале Х, а N – случайным образом выбранная константа.
Задача №1
Необходимо определить все возможные варианты решения диффуравнения, имеющего вид
Последовательно рассмотрим решение.
Представленное диффуравнение может иметь смысл только при действительных значениях параметра х. Примем условие, что x ≠ 0, тогда выражение легко преобразовывается в следующее:
Если же, напротив, принять, что х = 0, то выражение приобретет следующий вид, характерный для любых функций y’, удовлетворяющих данному условию:
Можно заключить, что решением при справедливости условия х = 0 будет любая функция у, найденная, когда аргумент равен нулю. Остается только проинтегрировать полученное диффуравнение:
Данное выражение – это решение для приведенного диффуравнения.
ДУ с разделяющимися переменными
Среди дифуров 1-го порядка можно выделить такие, где все переменные х и у можно преобразовать так, что они окажутся по разные стороны от знака равенства.
Соответственно уравнения, где путем преобразований это возможно сделать, называются диффуравнениями с разделяющимися переменными.
Их общий вид следующий:
После проведения нескольких преобразований, это выражение может быть сведено к следующему виду:
При составлении преобразований необходимо внимательно разделять переменные, не допуская, чтобы функции обращались в ноль, иначе возможна потеря некоторых значений.
Задача №2
Рассмотрим обыкновенный пример. Необходимо определить все возможные решения диффуравнения y' = y(x2 + ex)
Как решать? В первую очередь проводим разделение переменных в разные части уравнения:
Данные преобразования справедливы, если у ≠ 0.
Если рассмотреть вариант решения при нулевом показателе функции, то можно заметить ,что
Это означает, что y = 0 – одно из возможных решений задачи.
Рассмотрим другие варианты решений, для чего произведем интегрирование диффуравнения:
Финальная часть преобразований будет вторым решением диффуравнения. Останется только потенциировать это выражение, чтобы привести его к более явному виду:
Правильными решениями, в результате преобразований, будут:
Кроме того, можно воспользоваться онлайн системой для нахождения ответа. Подробные объяснения даны в решебниках Филиппова и Понтрягина.
Линейные неоднородные ДУ первого порядка
Линейные неоднородные уравнения – это такие выражения, которые можно записать в формате y' + b(x)y = f(x), при этом функции b(x) и f(x) – непрерывные.
Основной принцип при нахождении решения сводится к следующим шагам:
Первым делом для уравнения необходимо произвести поиск решения, которое бы соответствовало линейному однородному диффуравнению.
Затем необходимо варьировать произвольной постоянной, производя ее замену на функцию.
На финальном этапе функция подставляется в первоначальное уравнение, откуда, решая ДУ, получается ответ.
Задача №3
Рассмотрим применение методики решения на примере.
Необходимо найти решение дифференциального уравнения вида
Решение заключается в следующем. Первоначально примем, что y = m∗n, следовательно, получается:
На следующем этапе нужно определить, что такое m (оно обязательно не должно быть равным нулю), при котором все выражение внутри скобок будет равно нулю.
Получаем дополнительное дифференциальное уравнение:
Теперь необходимо принять одно из частных решений n = x2 + 1, которое соответствует равенству С2 — С1=0.
Выполняем оставшиеся преобразования:
Вполне очевидно, что ответом на условие задачи будет функция:
Задача Коши для ДУ
При рассмотрении решения практически любого диффуравнения, имеющего вид F(m,n,n') = 0, становится очевидно, что это бесконечно большое количество решений (это следствие самого возникновения диффуравнения).
На данном этапе математики сталкиваются с вопросом о выборе конкретного решения и способе его выделения из множества.Иными словами, если представить решения в виде бесконечного множества интегральных кривых, то необходимо найти среди них нужную.
Чтобы это сделать, необходимо рассмотреть плоскость Xoy, где должна быть задана некая точка D0, имеющая координаты (x0, y0) – именно через них и должна пройти интегральная кривая, чтобы стать искомым ответом.
Когда мы с самого начала задаем точку D0(x0, y0) – это означает, задание начального условия y(x0) = y0. Диффуравнение, для которого определено начальное условие в представленном формате, называется уравнением с заданной задачей Коши.
Задача №4
Рассмотрим примеры с объяснениями. Необходимо определить решения задачи Коши вида:
Ход решения строится в три этапа. На первом этапе решаем диффуравнение y' = xy2 стандартным методом. Его решение приводить не будем, приведем только ответ:
Производим подстановку начального значения (х = 0, у = 1) в решение и находим значение С:
Производим подстановку полученного значения в ответ диффуравнения и получаем одно из частных решений:
Полученная функция – ответ на задачу Коши в этом примере.
Дифференциальные уравнения Бернулли
ДУ Бернулли обычно представлено в следующем виде:
y' + b(x)y = c(x)yn
Обязательное условие, что функции b(x) и c(x) – являются непрерывными.
Задача №5
Рассмотрим общее решение данного типа на примере. Необходимо выполнить поиск всех возможных решений уравнения:
Во время оценки уравнения в нем можно идентифицировать ДУ Бернулли с параметром ½. Оно легко сводится к линейному ДУ, для этого достаточно заменить выражения:
Находим производную:
Выполним деление по начальному уравнению Бернулли на
и выполним необходимые преобразования:
Произведем замену параметра х на параметр у:
Теперь вычисляем интегрирующий модуль для данной функции, он будет равен:
Теперь производим ряд преобразований для вычисления решения диффуравнения:
Переписываем полученную функцию в неявном виде и получаем ответ:
Дифференциальные уравнения второго порядка
Отличить ДУ 2-го порядка от таковых 1-го порядка достаточно просто – в их составе присутствует вторая производная (y’’) и не содержится производных более высокого уровня.
Общий вид таких уравнений таков:
F(m,n,n',n») = 0
Линейные однородные ДУ второго порядка с постоянными коэффициентами
Определение линейных дифференциальных однородных уравнений 2-го порядка крайне просто – они имеют вид:
y» + ry' + k = 0
При это важным условием теории является причисление r и k к действительным числам.
Задача №6
Рассмотрим решение однородных диффуравнений 2-го порядка с постоянными коэффициентами на примере.
Найти решение диффуравнения 2-го порядка вида:
Во всех таких случаях начинаем с поиска характеристического уравнения:
Методы решения данного уравнения достаточно простые, можно воспользоваться калькулятором или быстро решить на листочке, поэтому их приводить не будем, запишем лишь корни – 1, 5.
Поскольку это все действительные, неодинаковые числа, то можно записать функцию-решение в следующем виде:
Линейные неоднородные ДУ второго порядка с постоянными коэффициентами
Общий вид неоднородных диффуравнений второго порядка легко определить по представленному образцу:
y» + ry' + ky = f(x)
Переменные r и k должны быть вещественными и постоянными числами.
Задача №7
Рассмотрим подробное решение. Необходимо определить все решения для уравнения y» + y = cos x.
На первом этапе находим в составе неоднородного уравнения его однородную часть – это будет y» — y = 0.
Для него уже выполняем поиск характеристического уравнения – оно будет иметь вид k2 + 1 = 0.
Корнями для данного характеристического уравнения являются k1 = -i и k2 = i.
Исходя из этого записываем решение для однородного уравнения:
Из-за отсутствия параметра с производной первого порядка также будет справедливо записать:
Теперь остается только подставить найденные выражения:
Частное и общее решение для уравнения можно записать:
Дифференциальные уравнения высших порядков
Дифференциальные однородные уравнения высших порядков легко отличить, если они совпадают со следующим видом:
Для неоднородных справедлив другой формат:
Для выбора корректного пути решения ДУ, необходимо четко и правильно определить его тип.
Для этого необходимо решить уравнение относительно его производной и проверить, возможно ли разложение функции на множители. После этого достаточно сравнить с одним из типов, приведенным в данной статье.
Источник: https://nauka.club/matematika/algebra/differentsialnye-uravneniya.html
Дифференциальные уравнения первого порядка
Приведена инструкция, как решать дифференциальные уравнения первого порядка. Перечислены основные типы обыкновенных ДУ первого порядка. Кратко изложены методы их решения. Указаны ссылки на страницы с подробным изложением методов решения и разобранными примерами.
Далее в тексте – функции своих аргументов. Штрих ′ означает производную по аргументу. – постоянные.
Как решать дифференциальные уравнения первого порядка
Пусть мы имеем дифференциальное уравнение первого порядка, разрешенное относительно производной:
.
Разделив это уравнение на , при , мы получим уравнение вида:
,
где .
Далее смотрим, не относятся ли эти уравнения к одному из перечисленных ниже типов. Если нет, то перепишем уравнение в форме дифференциалов. Для этого пишем и умножаем уравнение на . Получаем уравнение в форме дифференциалов:
.
Если это уравнение не является уравнением в полных дифференциалах, то считаем, что в этом уравнении – независимая переменная, а – это функция от . Разделим уравнение на :
.
Далее смотрим, не относится ли это уравнение к одному из, перечисленных ниже типов учитывая, что и поменялись местами.
Если и для этого уравнения не найден тип, то смотрим, нельзя ли упростить уравнение простой подстановкой. Например, если уравнение имеет вид:
,
то замечаем, что . Тогда делаем подстановку . После этого уравнение примет более простой вид:
.
Если и это не помогает, то пытаемся найти интегрирующий множитель ⇓.
Уравнения с разделяющимися переменными
;
.
Делим на и интегрируем. При получаем:
.
Подробнее >>>
Уравнения, приводящиеся к уравнениям с разделяющимися переменными
Делаем подстановку . Тогда
;
. Далее разделяем переменные и интегрируем.
Подробнее >>>
Однородные уравнения
Решаем подстановкой:
,
где – функция от . Тогда
;
. Разделяем переменные и интегрируем.
Подробнее >>>
Уравнения, приводящиеся к однородным
Вводим переменные и :
;
.
Постоянные и выбираем так, чтобы свободные члены обратились в нуль:
;
.
В результате получаем однородное уравнение в переменных и .
Подробнее >>>
Обобщенные однородные уравнения
Делаем подстановку . Получаем однородное уравнение в переменных и .
Подробнее >>>
Линейные дифференциальные уравнения
Есть три метода решения линейных уравнений.
1) Метод интегрирующего множителя.
Умножаем уравнение на интегрирующий множитель :
;
. Далее интегрируем.
Подробнее >>>
2) Метод Бернулли.
Ищем решение в виде произведения двух функций и от переменной :
.
;
.
Одну из этих функций мы можем выбрать произвольным образом. Поэтому в качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .
Подробнее >>>
3) Метод вариации постоянной (Лагранжа). Здесь мы сначала решаем однородное уравнение: Общее решение однородного уравнения имеет вид:
,
где – постоянная. Далее мы заменяем постоянную на функцию , зависящую от переменной :
.
Подставляем в исходное уравнение. В результате получаем уравнение, из которого определяем .
Подробнее >>>
Уравнения Бернулли
Подстановкой уравнение Бернулли приводится к линейному уравнению.
https://www.youtube.com/watch?v=bAZajFtuj8Y\u0026list=PLGtfmJuN1mTDlr4rnIsQ21bQd4RMVgtrW
Также это уравнение можно решать методом Бернулли. То есть ищем решение в виде произведения двух функций, зависящих от переменной :
. Подставляем в исходное уравнение:
;
.
В качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .
Подробнее >>>
Уравнения Риккати
Оно не решается в общем виде. Подстановкой уравнение Риккати приводится к виду:
,
где – постоянная; ; . Далее, подстановкой: оно приводится к виду:
,
где .
Свойства уравнения Риккати и некоторые частные случаи его решения представлены на странице
Дифференциальное уравнение Риккати >>>
Уравнения Якоби
Решается подстановкой:
.
Подробнее >>>
Уравнения в полных дифференциалах
При условии
.
При выполнении этого условия, выражение в левой части равенства является дифференциалом некоторой функции:
.
Тогда
.
Отсюда получаем интеграл дифференциального уравнения:
.
Для нахождения функции , наиболее удобным способом является метод последовательного выделения дифференциала. Для этого используют формулы:
;
;
;
.
Подробнее >>>
Интегрирующий множитель
Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то можно попытаться найти интегрирующий множитель .
Интегрирующий множитель – это такая функция, при умножении на которую, дифференциальное уравнение становится уравнением в полных дифференциалах. Дифференциальное уравнение первого порядка имеет бесконечное число интегрирующих множителей.
Однако, общих методов для нахождения интегрирующего множителя нет.
Подробнее >>>
Уравнения, допускающие решение относительно производной y'
Сначала нужно попытаться разрешить уравнение относительно производной . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.
Уравнения, допускающие разложение на множители
Если удастся уравнение разложить на множители:
, то задача сводится к последовательному решению более простых уравнений:
;
;
;
Подробнее >>>
Уравнения, не содержащие x и y
Здесь – постоянная:
,
где – корень уравнения
.
Подробнее >>>
Уравнения, не содержащие x или y
или
Ищем решение в параметрическом виде. Вводим параметр . Полагаем . Тогда
или . Далее интегрируем уравнение:
;
.
В результате получаем выражение второй переменной через параметр .
Более общие уравнения:
или
также решаются в параметрическом виде. Для этого нужно подобрать такую функцию , чтобы из исходного уравнения можно было выразить или через параметр .
Чтобы выразить вторую переменную через параметр , интегрируем уравнение:
;
.
Подробнее >>>
Уравнения Клеро
Такое уравнение имеет общее решение
Подробнее >>>
Уравнения Лагранжа
Решение ищем в параметрическом виде. Полагаем , где – параметр.
Подробнее >>>
Уравнения, приводящиеся к уравнению Бернулли
Эти уравнения приводятся к уравнению Бернулли, если искать их решения в параметрическом виде, введя параметр и делая подстановку .
Подробнее >>>
Использованная литература: В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.
Олег Одинцов. : 20-05-2016
Источник: https://1cov-edu.ru/differentsialnye-uravneniya/pervogo-poryadka/