Как решить дифференциальное уравнение первого порядка

Содержание
  1. Примеры решения дифференциальных уравнений с ответами
  2. Примеры решения дифференциальных уравнений
  3. Дифференциальные уравнения (ДУ) — методы и примеры решения уравнений разного порядка
  4. Дифференциальные уравнения первого порядка
  5. Простейшие ДУ первого порядка
  6. Задача №1
  7. ДУ с разделяющимися переменными
  8. Задача №2
  9. Линейные неоднородные ДУ первого порядка
  10. Задача №3
  11. Задача Коши для ДУ
  12. Задача №4
  13. Дифференциальные уравнения Бернулли
  14. Задача №5
  15. Дифференциальные уравнения второго порядка
  16. Линейные однородные ДУ второго порядка с постоянными коэффициентами
  17. Задача №6
  18. Линейные неоднородные ДУ второго порядка с постоянными коэффициентами
  19. Задача №7
  20. Дифференциальные уравнения высших порядков
  21. Дифференциальные уравнения первого порядка
  22. Как решать дифференциальные уравнения первого порядка
  23. Уравнения с разделяющимися переменными
  24. Уравнения, приводящиеся к уравнениям с разделяющимися переменными
  25. Однородные уравнения
  26. Уравнения, приводящиеся к однородным
  27. Обобщенные однородные уравнения
  28. Линейные дифференциальные уравнения
  29. Уравнения Бернулли
  30. Уравнения Риккати
  31. Уравнения Якоби
  32. Уравнения в полных дифференциалах
  33. Интегрирующий множитель
  34. Уравнения, допускающие решение относительно производной y'
  35. Уравнения, допускающие разложение на множители
  36. Уравнения, не содержащие x и y
  37. Уравнения, не содержащие x или y
  38. Уравнения Клеро
  39. Уравнения Лагранжа
  40. Уравнения, приводящиеся к уравнению Бернулли

Примеры решения дифференциальных уравнений с ответами

Как решить дифференциальное уравнение первого порядка

Дифференциальные уравнения не так сильно отличаются от привычных уравнений, где необходимо найти переменную x, как кажется на первый взгляд. Всё различие лишь в том, что в дифференциальных уравнениях мы ищем не переменную, а функцию у(х), с помощью которой можно обратить уравнение в равенство.

Теорема

Дифференциальное уравнение – это уравнение, содержащее саму функцию (y=y(x)), производные функции или дифференциалы (y′, y″) и независимые переменные (наиболее распространённая – х). Обыкновенным дифференциальным уравнением называют уравнение, в котором содержится неизвестная функция под знаком производной или под знаком дифференциала.

Алгоритм

Чтобы решить ДУ, необходимо найти множество всех функций, которые удовлетворяют данному уравнению. Это множество в большинстве случаев выглядит следующим образом:y=f(x; С), где С – произвольная постоянная.

Проверить решённое ДУ можно, подставив найденную функцию в изначальное уравнение и убедившись, что уравнение обращается в тождество (равенство).

Примеры решения дифференциальных уравнений

Пример 1

Задание

Решить дифференциальное уравнение xy’=y.

Решение

В первую очередь, необходимо переписать уравнение в другой вид. Пользуясь 

переписываем дифференциальное уравнение, получаем

Дальше смотрим, насколько реально разделить переменные, то есть путем обычных манипуляций (перенос слагаемых из части в часть, вынесение за скобки и пр.) получить выражение, где «иксы» с одной стороны, а «игреки» с другой. В данном уравнении разделить переменные вполне реально, и после переноса множителей  по правилу пропорции получаем

Далее интегрируем полученное уравнение:

В данном случае интегралы берём из таблицы:

После того, как взяты интегралы, дифференциальное уравнение считается решённым. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения.

То есть,

– это общий интеграл. Также для удобства и красоты, его можно переписать в другом виде: y=Cx, где С=Const

Ответ

y=Cx, где С=Const.

Пример 2

Задание

Найти частное решение дифференциального уравнения

.

Решение

Действуем по тому же алгоритму, что и в предыдущем решении.

Важно! Когда работу писать становится сложно, можно обратиться с вопросом к экспертам. Это поможет сделать работу быстро.

Подробнее

Переписываем производную в нужном виде, разделяем переменные и интегрируем полученное уравнение:

Получили общий интеграл.Далее, воспользуемся свойством степеней, выразим у в «общем» виде и перепишем функцию:

Если  – это константа, то

– тоже некоторая константа, заменим её буквой С:

– убираем модуль и теперь константа может принимать и положительные, и отрицательные значения.

Получаем общее решение:

где С=const.

Ответ

где С=const.

Пример 3

Задание

Решить дифференциальное уравнение

Решение

В первую очередь необходимо переписать производную в необходимом виде:

Второй шаг – разделение переменных и перенос со сменой знака второго слагаемого в правую часть:

После разделения переменных, интегрируем уравнение, как в примерах выше.

Чтобы решить интегралы из левой части, применим метод подведения функции под знак дифференциала:

В ответе мы получили одни логарифмы и константу, их тоже определяем под логарифм.

Далее упрощаем общий интеграл:

Приводим полученный общий интеграл к виду: F(x,y)=C:

Чтобы ответ смотрелся красивее, обе части необходимо возвести в квадрат.

Ответ

Общий интеграл:

где С=const.

Пример 4

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(0)=ln2.

Решение

Первый шаг – нахождение общего решения. То, что в исходном уравнении уже находятся готовые дифференциалы dy и dx значительно упрощает нам решение.

Начинаем разделять переменные и интегрировать уравнение:

Мы получили общий интеграл и следующий шаг – выразить общее решение. Для этого необходимо прологарифмировать обе части. Знак модуля не ставим, т.к. обе части уравнения положительные.

Получаем общее решение:

где С=const

Далее необходимо найти частное решение, которое соответствует заданному начальному условию y(0)=ln2.

В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Частное решение:

.

Пример 5

Задание

Решить дифференциальное уравнение

.

Решение

При внимательном разборе данного уравнения видно, что можно разделить переменные, что и делаем, после интегрируем:

В данном случае константу C считается  не обязательным определять под логарифм.

Ответ

Общий интеграл:

Пример 6

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(1)=e. Выполнить проверку.

Решение

Как и в предыдущих примерах первым шагом будет нахождение общего решения. Для этого начинаем разделять переменные:

Интегрируем:

Общий интеграл получен, осталось упростить его. Упаковываем логарифмы и избавляемся от них:

Используя

можно выразить функцию в явном виде.

Общее решение:

где С=const.

Осталось найти частное решение, удовлетворяющее начальному условию y(1)=e.

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Частное решение:

Проверка

Необходимо проверить, выполняется ли начальное условие:

Из равенства выше видно, что начальное условие y(1)=e выполнено.

Далее проводим следующую проверку: удовлетворяет ли вообще частное решение

дифференциальному уравнению. Для этого находим производную:

Подставим полученное частное решение

и найденную производную  в исходное уравнение

0=0

Получено верное равенство, значит, решение найдено правильно.

Пример 7

Задание

Найти общий интеграл уравнения

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Ответ

Общий интеграл:

Пример 8

Задание

Найти частное решение ДУ.

Решение

Данное ДУ допускает разделение переменных. Разделяем переменные:

Интегрируем:

Общий интеграл:

Найдем частное решение (частный интеграл), соответствующий заданному начальному условию

Подставляем в общее решение

Ответ

Частный интеграл:

Пример 9

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Левую часть интегрируем по частям:

В интеграле правой части проведем замену:

Таким образом:

(здесь дробь раскладывается методом неопределенных коэффициентов)

Обратная замена:

Ответ

Общий интеграл:

где С=const.

Пример 10

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных.

Разделяем переменные и интегрируем:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Ответ

Общее решение:

где С=const.

Источник: https://NauchnieStati.ru/spravka/primery-resheniya-differenczialnyh-uravnenij-s-otvetami/

Дифференциальные уравнения (ДУ) — методы и примеры решения уравнений разного порядка

Как решить дифференциальное уравнение первого порядка

Многих людей, хоть как-то изучавших курс высшей математики в учебном заведении, приводит в ужас словосочетание «дифференциальные уравнения». 

Согласно строгому научному определению в книгах – так именуются математические выражения, где в состав входят функция, ее производная или параметр. 

Имеется достаточно большое количество типов этих равенств, рассмотрим подходы к их решению так, чтобы они были понятны даже для «чайников».

Дифференциальные уравнения первого порядка

Обыкновенное диффуравнение (ДУ) 1-го порядка задается относительно некой функции, имеющей вид у(х):

F(x,y(x),y´(x)) = 0,

здесь, F(x,y,y’) – это функция, задающаяся для трех аргументов (в этом примере для х, у и у’).Таково строгое математическое определение ДУ.

Для примера можно привести следующее уравнение:

xy'(x) — y(x)2 = 0

функция вида F(x,y,p) = xp — y2

Простейшие ДУ первого порядка

Общепринятый механизм нахождения решения таких выражений (чаще всего похожи на y' = f(x)) – это интегрирование левой и правой части такого уравнения на заданном промежутке Х. 

После интегрирования получим такое выражение:

∫ y'dx = ∫ f(x)dx

Воспользовавшись свойствами, которые относятся к интегральным выражениям, упростим выражение до вида:

y = F(x) + N

здесь, F(x) – это первообразная от функции f(x) на заданном интервале Х, а N – случайным образом выбранная константа.

Задача №1

Необходимо определить все возможные варианты решения диффуравнения, имеющего вид 

Последовательно рассмотрим решение.

Представленное диффуравнение может иметь смысл только при действительных значениях параметра х. Примем условие, что x ≠ 0, тогда выражение легко преобразовывается в следующее:

Если же, напротив, принять, что х = 0, то выражение приобретет следующий вид, характерный для любых функций y’, удовлетворяющих данному условию:

Можно заключить, что решением при справедливости условия х = 0 будет любая функция у, найденная, когда аргумент равен нулю. Остается только проинтегрировать полученное диффуравнение:

Данное выражение – это решение для приведенного диффуравнения.

ДУ с разделяющимися переменными

Среди дифуров 1-го порядка можно выделить такие, где все переменные х и у можно преобразовать так, что они окажутся по разные стороны от знака равенства. 

Соответственно уравнения, где путем преобразований это возможно сделать, называются диффуравнениями с разделяющимися переменными. 

Их общий вид следующий:

После проведения нескольких преобразований, это выражение может быть сведено к следующему виду:

При составлении преобразований необходимо внимательно разделять переменные, не допуская, чтобы функции обращались в ноль, иначе возможна потеря некоторых значений.

Задача №2

Рассмотрим обыкновенный пример. Необходимо определить все возможные решения диффуравнения y' = y(x2 + ex)

Как решать? В первую очередь проводим разделение переменных в разные части уравнения:

Данные преобразования справедливы, если у ≠ 0.

Если рассмотреть вариант решения при нулевом показателе функции, то можно заметить ,что

Это означает, что y = 0 – одно из возможных решений задачи.

Рассмотрим другие варианты решений, для чего произведем интегрирование диффуравнения:

Финальная часть преобразований будет вторым решением диффуравнения. Останется только потенциировать это выражение, чтобы привести его к более явному виду:

Правильными решениями, в результате преобразований, будут:

 

Кроме того, можно воспользоваться онлайн системой для нахождения ответа. Подробные объяснения даны в решебниках Филиппова и Понтрягина.

Линейные неоднородные ДУ первого порядка

Линейные неоднородные уравнения – это такие выражения, которые можно записать в формате y' + b(x)y = f(x), при этом функции b(x) и f(x) – непрерывные.

Основной принцип при нахождении решения сводится к следующим шагам:

  1. Первым делом для уравнения необходимо произвести поиск решения, которое бы соответствовало линейному однородному диффуравнению.

  2. Затем необходимо варьировать произвольной постоянной, производя ее замену на функцию.

  3. На финальном этапе функция подставляется в первоначальное уравнение, откуда, решая ДУ, получается ответ.

Задача №3

Рассмотрим применение методики решения на примере. 

Необходимо найти решение дифференциального уравнения вида 

Решение заключается в следующем. Первоначально примем, что y = m∗n, следовательно, получается:

На следующем этапе нужно определить, что такое m (оно обязательно не должно быть равным нулю), при котором все выражение внутри скобок будет равно нулю. 

Получаем дополнительное дифференциальное уравнение:

Теперь необходимо принять одно из частных решений n = x2 + 1, которое соответствует равенству С2 — С1=0.

Выполняем оставшиеся преобразования:

Вполне очевидно, что ответом на условие задачи будет функция:

Задача Коши для ДУ

При рассмотрении решения практически любого диффуравнения, имеющего вид F(m,n,n') = 0, становится очевидно, что это бесконечно большое количество решений (это следствие самого возникновения диффуравнения). 

На данном этапе математики сталкиваются с вопросом о выборе конкретного решения и способе его выделения из множества.Иными словами, если представить решения в виде бесконечного множества интегральных кривых, то необходимо найти среди них нужную. 

Чтобы это сделать, необходимо рассмотреть плоскость Xoy, где должна быть задана некая точка D0, имеющая координаты (x0, y0) – именно через них и должна пройти интегральная кривая, чтобы стать искомым ответом.

Когда мы с самого начала задаем точку D0(x0, y0) – это означает, задание начального условия y(x0) = y0. Диффуравнение, для которого определено начальное условие в представленном формате, называется уравнением с заданной задачей Коши.


Задача №4

Рассмотрим примеры с объяснениями. Необходимо определить решения задачи Коши вида:

Ход решения строится в три этапа. На первом этапе решаем диффуравнение y' = xy2 стандартным методом. Его решение приводить не будем, приведем только ответ:

Производим подстановку начального значения (х = 0, у = 1) в решение и находим значение С:

Производим подстановку полученного значения в ответ диффуравнения и получаем одно из частных решений:

Полученная функция – ответ на задачу Коши в этом примере.

Дифференциальные уравнения Бернулли


ДУ Бернулли обычно представлено в следующем виде:

y' + b(x)y = c(x)yn

Обязательное условие, что функции b(x) и c(x) – являются непрерывными.


Задача №5

Рассмотрим общее решение данного типа на примере. Необходимо выполнить поиск всех возможных решений уравнения:

Во время оценки уравнения в нем можно идентифицировать ДУ Бернулли с параметром ½. Оно легко сводится к линейному ДУ, для этого достаточно заменить выражения:

Находим производную:

Выполним деление по начальному уравнению Бернулли на 

и выполним необходимые преобразования:

Произведем замену параметра х на параметр у:

Теперь вычисляем интегрирующий модуль для данной функции, он будет равен:

Теперь производим ряд преобразований для вычисления решения диффуравнения:

Переписываем полученную функцию в неявном виде и получаем ответ:

Дифференциальные уравнения второго порядка

Отличить ДУ 2-го порядка от таковых 1-го порядка достаточно просто – в их составе присутствует вторая производная (y’’) и не содержится производных более высокого уровня. 

Общий вид таких уравнений таков:

F(m,n,n',n») = 0  

Линейные однородные ДУ второго порядка с постоянными коэффициентами

Определение линейных дифференциальных однородных уравнений 2-го порядка крайне просто – они имеют вид:

y» + ry' + k = 0

При это важным условием теории является причисление r и k к действительным числам.

Задача №6

Рассмотрим решение однородных диффуравнений 2-го порядка с постоянными коэффициентами на примере.

Найти решение диффуравнения 2-го порядка вида:

Во всех таких случаях начинаем с поиска характеристического уравнения:

Методы решения данного уравнения достаточно простые, можно воспользоваться калькулятором или быстро решить на листочке, поэтому их приводить не будем, запишем лишь корни – 1, 5. 

Поскольку это все действительные, неодинаковые числа, то можно записать функцию-решение в следующем виде:

Линейные неоднородные ДУ второго порядка с постоянными коэффициентами

Общий вид неоднородных диффуравнений второго порядка легко определить по представленному образцу:

y» + ry' + ky = f(x)

Переменные r и k должны быть вещественными и постоянными числами.

Задача №7

Рассмотрим подробное решение. Необходимо определить все решения для уравнения y» + y = cos x.

На первом этапе находим в составе неоднородного уравнения его однородную часть – это будет y» — y = 0. 

Для него уже выполняем поиск характеристического уравнения – оно будет иметь вид k2 + 1 = 0.

Корнями для данного характеристического уравнения являются k1 = -i и k2 = i. 

Исходя из этого записываем решение для однородного уравнения:

Из-за отсутствия параметра с производной первого порядка также будет справедливо записать:

Теперь остается только подставить найденные выражения:

Частное и общее решение для уравнения можно записать:

Дифференциальные уравнения высших порядков

Дифференциальные однородные уравнения высших порядков легко отличить, если они совпадают со следующим видом:

Для неоднородных справедлив другой формат:

Для выбора корректного пути решения ДУ, необходимо четко и правильно определить его тип. 

Для этого необходимо решить уравнение относительно его производной и проверить, возможно ли разложение функции на множители. После этого достаточно сравнить с одним из типов, приведенным в данной статье.

Источник: https://nauka.club/matematika/algebra/differentsialnye-uravneniya.html

Дифференциальные уравнения первого порядка

Как решить дифференциальное уравнение первого порядка

Приведена инструкция, как решать дифференциальные уравнения первого порядка. Перечислены основные типы обыкновенных ДУ первого порядка. Кратко изложены методы их решения. Указаны ссылки на страницы с подробным изложением методов решения и разобранными примерами.

Далее в тексте – функции своих аргументов. Штрих ′ означает производную по аргументу. – постоянные.

Как решать дифференциальные уравнения первого порядка

Пусть мы имеем дифференциальное уравнение первого порядка, разрешенное относительно производной:
.
Разделив это уравнение на , при , мы получим уравнение вида:
,
где .

Далее смотрим, не относятся ли эти уравнения к одному из перечисленных ниже типов. Если нет, то перепишем уравнение в форме дифференциалов. Для этого пишем и умножаем уравнение на . Получаем уравнение в форме дифференциалов:
.

Если это уравнение не является уравнением в полных дифференциалах, то считаем, что в этом уравнении – независимая переменная, а – это функция от . Разделим уравнение на :
.
Далее смотрим, не относится ли это уравнение к одному из, перечисленных ниже типов учитывая, что и поменялись местами.

Если и для этого уравнения не найден тип, то смотрим, нельзя ли упростить уравнение простой подстановкой. Например, если уравнение имеет вид:
,
то замечаем, что . Тогда делаем подстановку . После этого уравнение примет более простой вид:
.

Если и это не помогает, то пытаемся найти интегрирующий множитель ⇓.

Уравнения с разделяющимися переменными

;
.
Делим на и интегрируем. При получаем:
.
Подробнее >>>

Уравнения, приводящиеся к уравнениям с разделяющимися переменными

Делаем подстановку . Тогда
;
. Далее разделяем переменные и интегрируем.

Подробнее >>>

Однородные уравнения

Решаем подстановкой:

,

где – функция от . Тогда
;
. Разделяем переменные и интегрируем.

Подробнее >>>

Уравнения, приводящиеся к однородным

Вводим переменные и :
;
.
Постоянные и выбираем так, чтобы свободные члены обратились в нуль:
;
.
В результате получаем однородное уравнение в переменных и .
Подробнее >>>

Обобщенные однородные уравнения

Делаем подстановку . Получаем однородное уравнение в переменных и .
Подробнее >>>

Линейные дифференциальные уравнения

Есть три метода решения линейных уравнений.

1) Метод интегрирующего множителя.
Умножаем уравнение на интегрирующий множитель :
;
. Далее интегрируем.

Подробнее >>>

2) Метод Бернулли.
Ищем решение в виде произведения двух функций и от переменной :
.
;
.
Одну из этих функций мы можем выбрать произвольным образом. Поэтому в качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .
Подробнее >>>

3) Метод вариации постоянной (Лагранжа). Здесь мы сначала решаем однородное уравнение: Общее решение однородного уравнения имеет вид:

,

где – постоянная. Далее мы заменяем постоянную на функцию , зависящую от переменной :
.
Подставляем в исходное уравнение. В результате получаем уравнение, из которого определяем .
Подробнее >>>

Уравнения Бернулли

Подстановкой уравнение Бернулли приводится к линейному уравнению.

https://www.youtube.com/watch?v=bAZajFtuj8Y\u0026list=PLGtfmJuN1mTDlr4rnIsQ21bQd4RMVgtrW

Также это уравнение можно решать методом Бернулли. То есть ищем решение в виде произведения двух функций, зависящих от переменной :
. Подставляем в исходное уравнение:

;

.
В качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .

Подробнее >>>

Уравнения Риккати

Оно не решается в общем виде. Подстановкой уравнение Риккати приводится к виду:

,

где – постоянная;   ;   . Далее, подстановкой: оно приводится к виду:

,

где .

Свойства уравнения Риккати и некоторые частные случаи его решения представлены на странице
Дифференциальное уравнение Риккати >>>

Уравнения Якоби

Решается подстановкой:

.

Подробнее >>>

Уравнения в полных дифференциалах

При условии

.

При выполнении этого условия, выражение в левой части равенства является дифференциалом некоторой функции:

.

Тогда

.

Отсюда получаем интеграл дифференциального уравнения:

.

Для нахождения функции , наиболее удобным способом является метод последовательного выделения дифференциала. Для этого используют формулы:
;
;
;
.
Подробнее >>>

Интегрирующий множитель

Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то можно попытаться найти интегрирующий множитель .

Интегрирующий множитель – это такая функция, при умножении на которую, дифференциальное уравнение становится уравнением в полных дифференциалах. Дифференциальное уравнение первого порядка имеет бесконечное число интегрирующих множителей.

Однако, общих методов для нахождения интегрирующего множителя нет.
Подробнее >>>

Уравнения, допускающие решение относительно производной y'

Сначала нужно попытаться разрешить уравнение относительно производной . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.

Уравнения, допускающие разложение на множители

Если удастся уравнение разложить на множители:
, то задача сводится к последовательному решению более простых уравнений:

;

;

;
Подробнее >>>

Уравнения, не содержащие x и y

Здесь – постоянная:
,
где – корень уравнения
.
Подробнее >>>

Уравнения, не содержащие x или y

  или  
Ищем решение в параметрическом виде. Вводим параметр . Полагаем . Тогда
  или   . Далее интегрируем уравнение:

;

.
В результате получаем выражение второй переменной через параметр .

Более общие уравнения:
  или  
также решаются в параметрическом виде. Для этого нужно подобрать такую функцию , чтобы из исходного уравнения можно было выразить или через параметр .
Чтобы выразить вторую переменную через параметр , интегрируем уравнение:
;
.
Подробнее >>>

Уравнения Клеро

Такое уравнение имеет общее решение
Подробнее >>>

Уравнения Лагранжа

Решение ищем в параметрическом виде. Полагаем , где – параметр.
Подробнее >>>

Уравнения, приводящиеся к уравнению Бернулли

Эти уравнения приводятся к уравнению Бернулли, если искать их решения в параметрическом виде, введя параметр и делая подстановку .
Подробнее >>>

Использованная литература: В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.

Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Олег Одинцов.     : 20-05-2016

Источник: https://1cov-edu.ru/differentsialnye-uravneniya/pervogo-poryadka/

Делаем просто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: