Как считать матрицы

Содержание
  1. Калькулятор матриц с решением онлайн | Действия с матрицами
  2. Как пользоваться калькулятором матриц
  3. Из чего могут состоять выражения?
  4. Примеры корректных выражений
  5. Элементы матрицы
  6. Некоторые теоретические сведения
  7. Решение матриц — методы вычисления с примерами
  8. Сложение и вычитание
  9. Умножение на число
  10. Операция перемножения
  11. Возведение в степень
  12. Расчёт определителя
  13. Обратная матрица
  14. Нахождение собственных векторов
  15. Метод Гаусса
  16. Способ Крамера
  17. Матрицы: примеры с решением и объяснением
  18. Сложение и вычитание
  19. Умножение матрицы на число
  20. Произведение матричных таблиц
  21. Нахождение определителя матрицы
  22. Обратные матрицы
  23. Транспонирование матричных таблиц
  24. Вычисление определителя матрицы в EXCEL
  25. Свойства определителя
  26. Вычисление определителя матрицы по определению (до 6 порядка включительно)
  27. Примеры решения матриц с ответами
  28. Умножение
  29. Возведение матрицы в степень
  30. Обратная матрица

Калькулятор матриц с решением онлайн | Действия с матрицами

Как считать матрицы

  • /
  • Калькуляторы
  • /
  • Калькулятор матриц — действия с матрицами онлайн

С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.

Также может быть интересно:

Как пользоваться калькулятором матриц

  • В качестве элементов используются обыкновенные правильные дроби (1/2, 29/7, -1/125), десятичные дроби (12, -0.01, 3.14), а также числа в экспоненциальной форме (2.5e3, 1e-2).
  • Длина вводимых чисел ничем не ограничена, вводите хоть 1000 цифр, правда, возможно, придётся подождать, пока будут идти вычисления!
  • Используйте для работы одну или две матрицы (чтобы выполнять операции с двумя матрицами, передвиньте переключатель второй матрицы).
  • Вставляйте результат в A или B с помощью кнопок «Вставить в A» и «Вставить в B».
  • Перетаскивайте (drag-and-drop) матрицы из результата в A или B.
  • Используйте стрелки (←, ↑, →, ↓) для перемещения по элементам

С одной матрицей (только Матрица A или Матрица B)С двумя матрицами (Матрица A и Матрица B)

  • Складывать;
  • Вычитать;
  • Умножать;
  • Решать системы линейных алгебраических уравнений (СЛАУ) вида AX=B;
  • Выполнять действия с выражениями, содержащими матрицы.

Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.

Из чего могут состоять выражения?

  • Целые и дробные числа
  • Матрицы A, B
  • Знаки арифметических действий: + — * /
  • Круглые скобки для изменения приоритета операций: ( )
  • Транспонирование: T
  • Возведение в целую степень:

Примеры корректных выражений

  • Cложение двух матриц: A+B, (A)+(B), ((A) + B)
  • Возведение линейной комбинации матриц в степень: (3A — 0.5B)5
  • Произведение транспонированной матрицы на исходную: ATA
  • Обратная матрица в квадрате для B: B-2

Матрицей размера n×m называется прямоугольная таблица специального вида, состоящая из n строк и m столбцов, заполненная числами. Матрицы обозначаются заглавными латинскими буквами. При необходимости размер записывается следующим образом: An×m.

Элементы матрицы

Элементы A обозначаются aij, где i — номер строки, в которой находится элемент, j — номер столбца.

Некоторые теоретические сведения

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: aTij = aji

диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii

Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.

Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)

След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A) или track(A)

Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.

Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: An

Обратная матрица A−1 — матрица, произведение которой на исходную матрицу A равно единичной матрице: A-1×A = A×A-1 = E

Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.

LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U

Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij

Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij

Умножение матриц An×k и Bk×m — матрица Cn×m, у которой элемент (cij) равен сумме произведений элементов i-той строки матрицы A на соответствующие элементы j-того столбца матрицы B: cij = ai1·b1j + ai2·b2j + … + aik·bkj

Источник: https://programforyou.ru/calculators/calculator-matric

Решение матриц — методы вычисления с примерами

Как считать матрицы

Определение гласит, что матрица — это прямоугольная таблица с заключёнными в ней числами. Её название обозначается латинскими прописными буквами (А, В). Таблицы бывают разной размерности — прямоугольной, квадратной, а также в виде строк и столбцов.

От количества строк и столбцов будет зависеть величина таблицы. Матрица размера m*n означает, что в таблице содержится m строк и n столбцов. Допустим, первая строка включает элементы а11, а12, а13, вторая — а21, а22, а23. Тогда элементы, где i = j (а11, а22) образовывают диагональ и называются диагональными.

Различают комплексные матрицы, у которых хотя бы один элемент равен комплексному числу, и действительные, когда все её элементы являются действительными числами. В математике комплексные числа представлены в виде a+b*i, где:

  • a — действительная часть числа;
  • b — мнимая часть;
  • i — мнимая единица (квадратный корень из -1).

На приведенном примере показаны варианты.

Простейшие действия с матрицами могут быть разными. К их числу относятся:

  • умножение;
  • вычитание;
  • умножение на число;
  • перемножение между собой;
  • транспортирование матриц.

Сложение и вычитание

Действия по сложению возможны только тогда, когда матрицы одинакового порядка равны между собой. В итоге получится новое матричное выражение такой же размерности. Сложение и вычитание выполняются по общей схеме — над соответствующими элементами таблиц проводят необходимые операции. Например, нужно сложить две матрицы А и В размерности 2*2.

Каждый элемент первой строки складывается по порядку с показателями верхней строчки второй матрицы. По аналогии производится вычитание, только вместо плюса ставится минус.

Умножение на число

Любую таблицу чисел можно умножить на число. Тогда каждый её элемент перемножается с этим показателем. К примеру, умножим матричное выражение на 2:

Операция перемножения

Матрицы подлежат перемножению одна на другую, когда количество столбцов первой таблицы равно числу строк второй. Каждый элемент Aij будет равняться сумме произведений элементов i-строки первой таблицы, перемноженных на числа в j-столбце второй. Способ произведения наглядно представлен на примере.

Возведение в степень

Формулу возведения в степень применяют только для квадратных матричных выражений. При этом степень должна быть натуральной. Формула возведения следующая:

Иначе, чтобы выполнить операцию возведения таблицы чисел в степень n, требуется умножить её на себя саму n раз. Для операции возведения в степень удобно применять свойство в соответствии с формулой:

Решение представлено на примере. 1 этап: необходимо возвести в степень, где n = 2.

2 этап: сначала возводят в степень n =2. Согласно формуле перемножают таблицу чисел саму на себя n = 2 раз.

3 этап: в итоге получаем:

Расчёт определителя

В линейной алгебре существует понятие определителя или детерминанта. Это число, которое ставят в соответствие каждой квадратной матрице, вычисленное из её элементов по специальной формуле. Определитель или модуль используется для решения большинства задач. Детерминант самой простой матрицы определяется с помощью вычитания перемноженных элементов из побочной диагонали и главной.

Определителем матрицы А n-энного порядка называется число, которое получают из алгебраической суммы n! слагаемых, попадающих под определённые критерии. Эти слагаемые являются произведением n-элементов, взятых единично из всех столбов и строк.

Произведения могут отличаться друг от друга составом элементов. Со знаком плюс будут включаться в сумму числа, если их индексы составляют чётную подстановку, в противоположном случае их значение меняется на минус. Определитель обозначается символом det A. Круглые скобки матричной таблицы, обрамляющие её элементы, заменяются на квадратные. Формула определителя:

Определитель первого порядка, состоящий из одного элемента, равен самому этому элементу. Детерминант матричной таблицы размером 2*2 второго порядка вычисляется путём перемножения её элементов, расположенных на главной диагонали, и вычитания из них произведения элементов, находящихся в побочной диагонали. Наглядный пример:

Для матрицы также можно найти дискриминант многочлена, отвечающий формуле:

Когда у многочлена имеются кратные корни, тогда дискриминант равен нулю.

Обратная матрица

Прежде чем переходить к понятию обратного выражения матрицы, следует рассмотреть алгоритм её транспонирования. Во время операции строки и столбцы переставляются местами. На рисунке представлен метод решения:

По аналогии обратная матрица сходна с обратными числами. Например, противоположной цифре 5 будет дробь 1/5 = 5 (-1) степени. Произведение этих чисел равно 1, выглядит оно так: 5*5 (-1) = 1. Умножение обычной матричной таблицы на обратную даст в итоге единичную: А* А (-1) = Е. Это аналог числовой единицы.

Но для начала нужно понять алгоритм вычисления обратной матрицы. Для этого находят её определитель. Разработано два метода решения: с помощью элементарных преобразований или алгебраических дополнений.

Более простой способ решения — путём алгебраических дополнений. Рассмотрим матричную таблицу А, обратная ей А (-1) степени находится по формуле:

Матрица обратного вида возможна только для квадратного размера таблиц 2*2, 3*3 и т. д. Обозначается она надстроенным индексом (-1). Задачу легче рассмотреть на более простом примере, когда размер таблицы равен 2*2. На первом этапе выполняют действия:

Обратного выражения матрицы не может быть, если определитель равен нулю. В рассматриваемом случае он равен -2, поэтому всё в порядке.

2 этап: рассчитывают матрицу миноров, которая имеет те же значения, что и первоначальная. Под минором k-того порядка понимается определитель квадратной матрицы порядка k*k, составленный из её элементов, которые располагаются в выбранных k- столбцах и k-строках.

При этом расположение элементов таблицы не меняется. Чтобы найти минор верхнего левого числа, вычёркивают строчку и столбец, в которых прописан этот элемент. Оставшееся число и будет являться минором. На выходе должна получиться таблица:

3 этап: находят алгебраические дополнения.

4 этап: определяют транспонированную матрицу.

Итогом будет:

Проверка решения: чтобы удостовериться, что обратная таблица чисел найдена верно, следует выполнить проверочную операцию.

В рассматриваемом примере получается единичная матрица, когда на главной диагонали находятся единицы, при этом другие элементы равняются нулю. Это говорит о том, что решение было найдено правильно.

Нахождение собственных векторов

Определение собственного вектора и значений матричного выражения легче понять на примере. Для этого задают матричную таблицу чисел и ненулевой вектор Х, называемый собственным для А. Пример выражения:

Согласно теореме собственными числами матричного выражения будут корни характеристического уравнения:

Из однородной системы уравнений можно определить координаты собственного вектора Х, который соответствует значению лямбда.

Метод Гаусса

Методом Гаусса называют способ преобразования системы уравнений линейного вида к упрощённой форме для дальнейшего облегчённого решения. Операции упрощения уравнений выполняют с помощью эквивалентных преобразований. К таким относят:

  • действия, когда в системе переставляются местами два уравнения;
  • произведение одного из уравнений в системе на действительное ненулевое число;
  • сложение первого уравнения со вторым, при этом последнее умножено на произвольное число.

Чтобы понять механизм решения, следует рассмотреть линейную систему уравнений.

Следует переписать эту систему в матричный вид:

А будет являться таблицей коэффициентов системы, b — это правая часть ограничений, а Х — вектор переменных координат, который требуется найти. Для решения используют ранг матрицы. Под ним понимают наивысший порядок минора, который отличается от 0.

В этом примере rang (A) = p. Способ эквивалентных преобразований не изменяет ранг таблицы коэффициентов.

Метод Гаусса предназначен для приведения матричной таблицы коэффициентов А к ступенчатому или диагональному виду. Расширенная система выглядит так:

Допустим, а11 не равен 0. В противном случае, если это не так, то меняют эту строку с другой, где в первом столбце находится элемент, отличный от нуля.

Когда подобные строчки отсутствуют, переходят к другому столбцу. Все нижние элементы столбца после а11 обнуляют. Для этих целей выполняют операции сложения строк 2,3…

m с первой строчкой, умноженной на а21/а11, -а31/а11….- аm1/a11. В результате система примет вид:

На втором шаге повторяют все действия с элементами столбца 2, которые расположены ниже а22. Если показатель равен нулю, строку также меняют местами со строчкой, лежащей ниже с ненулевым элементом во втором столбце.

Затем обнулению подлежат все показатели ниже а22. Для этого складывают строки 2,3 ..m, как описано выше. Выполняя процедуру со всеми элементами, приходят к матричной таблице ступенчатого или диагонального вида.

Полученная расширенная таблица будет выглядеть:

Обращают внимание на последние строки.

В этом случае система уравнений имеет решение, но когда хотя бы одно из этих чисел отличается от нуля, она несовместима. Таким образом, система совместима, если ранг таблицы А равен расширенному рангу В (А|b).

Если rang А=rang (A|b), то существует множество решений, где n-p — многообразие. Из этого следует n-p неизвестных Хр+1,…Xn выбираются произвольно. Неизвестные X1, X2,…

Xp вычисляют следующим образом: из последнего уравнения выражают Хр через остальные переменные, вставляя в предыдущие выражения.

Затем из предпоследнего уравнения получают Хр-1 через прочие переменные и подставляют их в предыдущие выражения. Процедуру повторяют.

Найти быстро ответ и проверить себя позволяет онлайн-калькулятор. Решение матрицы методом Гаусса с помощью такого расчёта показывает подробные этапы операций. Для нахождения достаточно указать количество переменных и уравнений, отметить в полях значения чисел и нажать кнопку «Вычислить».

Способ Крамера

Метод Крамера используют для решения квадратной системы уравнений, представленной в линейном виде, где определитель основной матрицы не равен нулю. Считается, что система обладает единственным решением. Например, задана система линейных уравнений:

Её необходимо заменить равноценным матричным уравнением.

Второй столбец вычисляют, а первый уже задан. Есть предположение, что определитель матрицы отличен от нуля. Из этого можно сделать выводы, что существует обратная матрица. Перемножив эквивалентное матричное уравнение на обратного формата матрицу, получим выражение:

В итоге получают выражения:

Из представленных уравнений выделяют формулы Крамера:

Метод Крамера не представляет сложности. Он может быть описан следующим алгоритмом:

  1. Высчитывают определитель дельта базовой матрицы.
  2. В матричной таблице А замещают первый столбец на вектор свободных элементов b.
  3. Выполняют расчёт определителя дельта1 выявленной матрицы А1.
  4. Определяют переменную Х1 = дельта1/дельта.
  5. Повторяют шаги со 2 по 4 пункт в матрице А для столбов 2,3…n.

Проверить решение матрицы методом Крамера онлайн позволяет калькулятор автоматического расчёта. Для получения быстрого ответа в представленные поля подставляют переменные числа и их количество. Дополнительно может потребоваться указание вычислительного метода разложения по строке или столбу. Другой вариант заключается в приведении к треугольному виду.

Указывается также представление чисел в виде целого числа, обыкновенной или десятичной дроби. После введения всех предусмотренных параметров и нажатия кнопки «Вычислить» получают готовое решение.

Источник: https://nauka.club/matematika/algebra/reshenie-matric.html

Матрицы: примеры с решением и объяснением

Как считать матрицы

Матрицы представляют собой таблицы чисел, взаимосвязанных между собой. Над ними возможно проводить ряд разнообразных операций, о которых мы расскажем вам ниже.

Размер матрицы определяется её порядками — количеством строчек $m$ и столбцов $n$, которые в ней присутствуют.

Строчки образованы элементами, стоящими на горизонтальных линиях, а столбцы — элементами, стоящими на прямых вертикальных линиях.

В случае если количество строчек эквивалентно количеству столбцов — порядок рассматриваемой таблички определяется лишь одним значением $m = n$.

Замечание 1

Для любого элемента матрицы номер строчки, в которой он находится, записывается первым в индексе, а номер столбца — вторым, то есть запись $a_{ij}$ обозначает, что элемент стоит в $i$-ой строчке и в $j$-ом столбце.

Сложение и вычитание

Итак, о сложении и вычитании. Эти действия возможно проводить только с матрицами одинакового размера.

Для того чтобы осуществить эти действия, необходимо провести сложение или вычитание каждого элемента матрицы с элементом другой матрицы, стоящим на той же позиции, что элемент в первой.

  • Курсовая работа 470 руб.
  • Реферат 270 руб.
  • Контрольная работа 250 руб.

В качестве примера найдём сумму $A+B$, где:

$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \\ \end{pmatrix}$

и $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\\ \end{pmatrix}$

Сумма любого элемента новой полученной матричной таблички $A + B$ равна $a_{ij} + b_{ij}$, например, элемент с индексом $11$ равен $a_{11} + b_{11}$,а весь результат целиком выглядит так:

$A + B = \begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+ b_{13} \\ a_{21}+ b_{21} & a_{22}+b_{22} & a_{23}+ b_{23} \\ a_{31}+ b_{31} & a_{32}+ b_{32} & a_{33} + b_{33} \\ \end{pmatrix}$

Вычитание для двух матриц $A-B$ осуществляется аналогично, но каждый элемент новой матрицы результата будет вычисляться по формуле $a_{ij} – b_{ij}$.

Обратите внимание, что сложение и вычитание для матриц возможно осуществлять только если их порядки одинаковые.

Пример 1

Решите следующие матричные примеры: $A + B$; $A – B$.

$A=\begin{pmatrix} 0 & 5 & 2 \\ 1 & -1 & 3 \\ -2 & 0 & 7 \\ \end{pmatrix}$

$B=\begin{pmatrix} 0 & 3 & 2 \\ -4 & 0 & -1 \\ 0 & 7 & -3 \\ \end{pmatrix}$

Объяснение:

Действия выполняем для каждой пары элементов $a_{ij}$ и $b_{ij}$ соответственно:

$A+B=\begin{pmatrix} 0+0 & 5+3 & 2+2 \\ 1-4 & -1+0 & 3 — 1\\ -2+0 & 0+7 & 7 — 3 \\ \end{pmatrix}=\begin{pmatrix} 0 & 8 & 4 \\ -3 & -1 & 2 \\ -2 & 7 & 4\\ \end{pmatrix}$

$A-B=\begin{pmatrix} 0-0 & 5-3 & 2-2 \\ 1+4 & -1-0 & 3 + 1\\ -2-0 & 0-7 & 7 + 3 \\ \end{pmatrix}=\begin{pmatrix} 0 & 2 & 0 \\ 5 & -1 & 4 \\ -2 & -7 & 10 \\ \end{pmatrix}$

Умножение матрицы на число

Для того чтобы произвести умножение матричной таблички на какое-либо число, нужно каждый её элемент умножить на это число, то есть любой элемент новой матрицы $C$, являющейся результатом произведения $A$ на $λ$ будет равен $с_{ij}=λ \cdot a_{ij}$.

Пример 2

Умножьте $A$ на $λ$, где $A=\begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix}$, а $λ=5$:

$A \cdot λ = 5 \cdot \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 & 0 \cdot 5 & 2 \cdot 5 \\ -1 \cdot 5 & 3 \cdot 5 & 0 \cdot 5 \\ 2 \cdot 5 & 1\cdot 5 & 3\cdot 5 \\ \end{pmatrix} = \begin{pmatrix} 5 & 0 & 10 \\ -5 & 15 & 0 \\ 10 & 5 & 15 \\ \end{pmatrix}$.

Произведение матричных таблиц

Эта задача несколько сложнее предыдущих, но при этом в ней также нет ничего сложного.

Для осуществления умножения двух матриц $A \cdot B$ количество столбцов в $A$ должно совпадать с количеством строчек в $B$.

Математически это можно записать так:

$A_{m \times n}\cdot B_{n \times p} = С_{m \times p}$

То есть видя перемножаемые исходные матрицы можно сразу определить порядки получаемой новой. Например, если необходимо перемножить $A_{3 \times 2}$ и $B_{2 \times 3}$ — полученный результат будет иметь размер $3 \times 3$:

$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} &b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} &b_{33} \\ \end{pmatrix} = \begin{pmatrix} • & • & • \\ • & • & • \\ • & • & • \\ \end{pmatrix}= \begin{pmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) & (a_{11}b_{13} + a_{12}b_{23}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) & (a_{11}b_{13} + a_{22}b_{23}) \\ (a_{31}b_{11} + a_{32}b_{21}) & (a_{31}b_{12} + a_{32}b_{22}) & (a_{31}b_{13} + a_{32}b_{23}) \\ \end{pmatrix}$

Если число столбцов первого матричного множителя не совпадает с количеством строчек второго матричного множителя, то умножение выполнить невозможно.

Пример 3

Решите пример:

$A \times B = ?$, если $A=\begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix}$ и $B = \begin{pmatrix} 3 & — 1 & 2 \\ -4 & 0 & 2 \\ 1 & 1 & 2 \\ \end{pmatrix}$.

$A \times B = \begin{pmatrix} (1 \cdot 3 + 0 \cdot (-4) + 2 \cdot 1) & (1 \cdot(-1) + 0 \cdot 0 + 2 \cdot 1) & (1 \cdot 2 + 0 \cdot 2 + 2 \cdot 2) \\ (-1) \cdot 3 + 3 \cdot (-4) + 0 \cdot 1) & (-1 \cdot(-1) + 3 \cdot 0 + 0 \cdot 1) & (-1 \cdot 2 + 3 \cdot 2 + 0 \cdot 2) \\ (2 \cdot 3 + 1 \cdot (-4) + 3 \cdot 1) & 2 \cdot (-1) + 1 \cdot 0 + 3 \cdot 1) & (2 \cdot 2 + 1 \cdot 2 + 3 \cdot 2) \\ \end{pmatrix} $

$A \times B= \begin{pmatrix} (3 + 0+ 2) & (-1 + 0 + 2) & (2 + 0 + 4) \\ (-3-12+0) & (1 + 0 + 0) & (-2+6+0) \\ (6-4+3) & (-2 + 0 + 3) & (4 + 2 + 6) \\ \end{pmatrix} = \begin{pmatrix} 5 & 1 & 6 \\ -15 & 1 & 4 \\ 5 & 1 & 12 \\ \end{pmatrix}$.

Нахождение определителя матрицы

Определитель матрицы обозначается как $Δ$ или $\det$.

Замечание 2

Детерминант возможно найти только для квадратных разновидностей матриц.

В простейшем случае, когда матрица состоит из всего одного элемента, её определитель равен этому элементу:$det A = |a_{11}|= a_{11}$

Вычислить определитель от матрицы порядка двух можно следуя такому правилу:

Определение 1

Определитель матрицы размера 2 равен разности произведений элементов, стоящих на главной диагонали с произведением элементов с побочной диагонали:

$\begin{array}{|cc|} a_{11}& a_{12} \\ a_{21} & a_{22} \\ \end{array} = a_{11} \cdot a_{22} – a_{12} \cdot a_{21}$

В случае если определитель матрицы задан размером $3 \times 3$, то найти его можно используя мнемонические правила: Саррюса или треугольников, также можно разложить матрицу по строчке или столбцу или воспользоваться преобразованиями Гаусса.

Для определителей большего размера можно использовать преобразования Гаусса и разложение по строчке.

Обратные матрицы

По аналогии с обычным умножением числа на обратное ему число $(1+\frac1x= 1)$, умножение обратной матрицы $A{-1}$ на исходную матрицу даёт в результате единичную матрицу $E$.

Самый простой метод решения при поиске обратной матрицы — Жордана-Гаусса. Рядом с матрицей-подопытным кроликом записывается единичная того же размера, а затем исходная с помощью преобразований приводится к единичной, причём все выполняемые действия повторяются и с $E$.

Пример 4

Дана $A=\begin{pmatrix}{cc} 1& 2 \\ 3 & 4 \\ \end{pmatrix}$

Получить обратную матрицу.

Решение:

Пишем вместе $A$ и справа от неё соответствующего размера $E$:

$ \begin{array}{cc|cc} 1& 2 & 1& 0\\ 3 & 4& 0 & 1 \\ \end{array}$

Получаем нуль в последней строчке на первой позиции:прибавляем к ней верхнюю, умноженную на $-3$:

$ \begin{array}{cc|cc} 1& 2 & 1 & 0\\ 0 & -2 & -3 & 1 \\ \end{array}$

Теперь обнуляем последний элемент первой строчки. Для этого к верхней строчке плюсуем нижнюю:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & -2 & -3 & 1 \\ \end{array}$

Делим вторую на $-2$:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & 1& 3/2 & -1/2 \\ \end{array}$

Получили результат:

$A=\begin{pmatrix}{cc} -2& 1 \\ 3/2 & -1/2 \\ \end{pmatrix}$

Транспонирование матричных таблиц

Транспонирование — это смена строк и столбцов в матрице или определителе местами с сохранением их исходного порядка. Определитель траспонированной матричной таблички $AT$ будет равен определителю исходной матрицы $A$.

Пример 5

Транспонируйте матрицу $A$ и проверьте себя, найдя определитель $A$ и транспонированной матричной таблички.

$A=\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ — 1 & -2 & -3\\ \end{pmatrix}$

Решение:

Применим метод Саррюса для детерминанта:

$\det A= 1 \cdot 5 \cdot (-3) + 2 \cdot 6 \cdot (-1) + 3 \cdot 4 \cdot (-2) – 2 \cdot 4 \cdot (-3) – 1 \cdot 6 \cdot (-2) – 3 \cdot 5 \cdot (-1) = -15 – 12 – 24+ 24 + 12 + 15 = 0$.

Мы получили вырожденную матрицу.

Теперь произведём транспонирование $A$, для этого повалим матрицу на её правый бок:

$AT = \begin{pmatrix} 1 & 4 & -1 \\ 2 & 5 & -2 \\ 3 & 6 & -3 \\ \end{pmatrix}$

Найдём для $AT$ определитель, используя то же правило:

$det AT = 1 \cdot 5 \cdot (-3) + 4 \cdot (-2) \cdot 3 + (-1) \cdot 2 \cdot 6 – 4 \cdot 2 \cdot (-3) – 1 \cdot (-2) \cdot 6 – (- 1) \cdot 5 \cdot 3 = — 15 -24 — 12+24+12+15 = 0$.

Источник: https://spravochnick.ru/matematika/matricy_primery_s_resheniem_i_obyasneniem/

Вычисление определителя матрицы в EXCEL

Как считать матрицы

Вычислим определитель (детерминант) матрицы с помощью функции МОПРЕД() или англ. MDETERM, разложением по строке/столбцу (для 3 х 3) и по определению (до 6 порядка).

Определитель матрицы (det) можно вычислить только для квадратных матриц, т.е. у которых количество строк равно количеству столбцов.

Для вычисления определителя в MS EXCEL есть специальная функция МОПРЕД() . В аргументе функции необходимо указать ссылку на диапазон ячеек (массив), содержащий элементы матрицы (см. файл примера ).

Массив может быть задан не только как интервал ячеек, например A7:B8 , но и как массив констант , например =МОПРЕД({5;4:3;2}) .

Запись с использованием массива констант позволяет не указывать элементы в отдельных ячейках, а разместить их в ячейке вместе с функцией.

 Массив в этом случае указывается по строкам: например, сначала первая строка 5;4, затем через двоеточие записывается следующая строка 3;2. Элементы отделяются точкой с запятой.

Ссылка на массив также может быть указана как ссылка на именованный диапазон .

Для матриц порядка 2 можно определитель можно вычислить без использования функции МОПРЕД() . Например, для вышеуказанной матрицы выражение =A7*B8-B7*A8 вернет тот же результат.

Для матрицы порядка 3, например размещенной в диапазоне A16:C18 , выражение усложняется =A16*(B17*C18-C17*B18)-B16*(A17*C18-C17*A18)+C16*(A17*B18-B17*A18) (разложение по строке).

В файле примера для матрицы 3 х 3 определитель также вычислен через разложение по столбцу и по правилу Саррюса.

Свойства определителя

Теперь о некоторых свойствах определителя (см. файл примера ):

  • Определитель транспонированной матрицы равен определителю исходной матрицы
  • Если в матрице все элементы хотя бы одной из строк (или столбцов) нулевые, определитель такой матрицы равен нулю
  • Если переставить местами две любые строки (столбца), то определитель полученной матрицы будет противоположен исходному (то есть, изменится знак)
  • Если все элементы одной из строк (столбца) умножить на одно и тоже число k, то определитель полученной матрицы будет равен определителю исходной матрицы, умноженному на k
  • Если матрица содержит строки (столбцы), являющиеся линейной комбинацией других строк (столбцов), то определитель =0
  • det(А)=1/det(А -1 ), где А -1 — матрица обратная матрице А (А — квадратная невырожденная матрица).

Вычисление определителя матрицы по определению (до 6 порядка включительно)

СОВЕТ : Этот раздел стоит читать только продвинутым пользователям MS EXCEL. Кроме того материал представляет только академический интерес, т.к. есть функция МОПРЕД() .

Как было показано выше для вычисления матриц порядка 2 и 3 существуют достаточно простые формулы и правила. Для вычисления определителя матриц более высокого порядка (без использования функции МОПРЕД() ) придется вспомнить определение:

Определителем квадратной матрицы порядка n х n является сумма, содержащая n! слагаемых ( =ФАКТР(n) ).

Каждое слагаемое представляет собой произведение n элементов матрицы, причем в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А .

Перед k-ым слагаемым появляется коэффициент (-1) , если элементы матрицы А в произведении упорядочены по номеру строки, а количество инверсий в k-ой перестановке множества номеров столбцов нечетно.

где ( α 1 , α 2 ,…, α n ) — перестановка чисел от 1 до n , N( α 1 , α 2 ,…, α n ) — число инверсий в перестановке , суммирование идёт по всем возможным перестановкам порядка n .

Попытаемся разобраться в этом непростом определении на примере матрицы 3х3.

Для матрицы 3 х 3, согласно определения, число слагаемых равно 3!=6, а каждое слагаемое состоит из произведения 3-х элементов матрицы. Ниже приведены все 6 слагаемых, необходимых для вычисления определителя матрицы 3х3:

  • а21*а12*а33
  • а21*а32*а13
  • а11*а32*а23
  • а11*а22*а33
  • а31*а22*а13
  • а31*а12*а23

а21, а12 и т.д. — это элементы матрицы. Теперь поясним, как были сформированы индексы у элементов, т.е. почему, например, есть слагаемое а11*а22*а33, а нет а11*а22*а13.

Посмотрим на формулу выше (см. определение). Предположим, что второй индекс у каждого элемента матрицы (от 1 до n) соответствует номеру столбца матрицы (хотя это может быть номер строки (это не важно т.к. определители матрицы и ее транспонированной матрицы равны).

Таким образом, второй индекс у первого элемента в произведении всегда равен 1, у второго — 2, у третьего 3. Тогда первые индексы у элементов соответствуют номеру строки и, в соответствии с определением, должны определяться из перестановок чисел от 1 до 3, т.е.

из перестановок множества (1, 2, 3).

Теперь понятно, почему среди слагаемых нет а11*а22*а13, т.к. согласно определения ( в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А ), а в нашем слагаемом нет элемента из строки 3.

Примечание : Перестановкой из n чисел множества (без повторов) называется любое упорядочивание данного множества, отличающиеся друг от друга лишь порядком входящих в них элементов.

Например, дано множество их 3-х чисел: 1, 2, 3. Из этих чисел можно составить 6 разных перестановок: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1). См.

статью Перестановки без повторений: Комбинаторика в MS EXCEL

Число перестановок множества из 3-х чисел =3!=6 (что, конечно, равно числу слагаемых в выражении для расчета определителя, т.к. каждому слагаемому соответствует своя перестановка).

Для матрицы 3х3 все перестановки приведены в примечании выше. Можно убедиться, что в каждом слагаемом первые индексы у элементов равны соответствующим числам в перестановке.

Например, для слагаемого а21*а12*а33 использована перестановка (2, 1, 3).

СОВЕТ : Для матрицы 4 порядка существует 4! перестановок, т.е. 26, что соответствует 26 слагаемым, каждое из которых является произведением различных 4-х элементов матрицы. Все 26 перестановок можно найти в статье Перебор всех возможных Перестановок в MS EXCEL .

Теперь, когда разобрались со слагаемыми, определим множитель перед каждым слагаемым (он может быть +1 или -1). Множитель определяется через четность числа инверсий соответствующей перестановки.

Примечание : Об инверсиях перестановок (и четности числа инверсий) можно почитать, например, в статье Перестановки без повторений: Комбинаторика в MS EXCEL

Например, первому слагаемому соответствует перестановка (2, 1, 3), у которой 1 инверсия (нечетное число) и, соответственно, -1 в степени 1 равно -1. Второму слагаемому соответствует перестановка (2, 3, 1), у которой 2 инверсии (четное число) и, соответственно, -1 в степени 2 равно 1 и т.д.

Сложив все слагаемые:  (-1)*(а21*а12*а33)+(+1)*(а21*а32*а13)+(-1)*(а11*а32*а23)+(+1)*(а11*а22*а33)+(-1)*(а31*а22*а13)+(+1)*(а31*а12*а23) получим значение определителя.

В файле примера на листе 4+, и зменяя порядок матрицы с помощью элемента управления Счетчик , можно вычислить определитель матрицы до 6 порядка включительно.

Следует учитывать, что при вычислении матрицы 6-го порядка в выражении используется уже 720 слагаемых (6!). Для 7-го порядка пришлось бы сделать таблицу для 5040 перестановок и, соответственно, вычислить 5040 слагаемых! Т.е. без использования МОПРЕД() не обойтись (ну, или можно вычислить определитель вручную методом Гаусса).

Источник: https://excel2.ru/articles/vychislenie-opredelitelya-matricy-v-ms-excel

Примеры решения матриц с ответами

Как считать матрицы
Теорема

Матрица – это математическая таблица с числовыми значениями. Обозначаются матрицы латинскими буквами.

Есть два отличия между матрицами:

  1. Комплексные матрицы.  Это когда хотя бы одно число равно  комплексному.
  2. Действительные матрицы. Это когда в матрице содержаться действительные числа.

С матрицей можно выполнять самые наипростейшие действия: умножение, деление, сложение, вычитание и трансформация.

Умножение

В математике умножать таблицу с числами можно абсолютно любую. В таком случае число умножается с показателем. Умножаем первое число на первой строке с числом второго столбца и так далее.

Пример

Задание

Даны две матрицы. Умножьте их друг на друга.

Решение

=

Матрицы можно перемножать друг на друга, только если количество столбцов в первой матрице, равно количеству строк второй. Элемент матрицы будет равняться сумме произведений (Aji), где i – строки в таблице; j – строки чисел второй таблицы.

Возведение матрицы в степень

Данную формулу используют лишь в случаях, если матрица стоит в квадратном выражении. Важно  знать, что степень должна быть у таких выражений натуральной!

Если число не будет натуральным, то это усложняет возведение матрицы в степень, так как степень n придётся умножить саму на себя n количество раз. Но если у Вас такой случай, то используется следующая формула.

Пример

Задание

Найдите

матрицы.

Решение

В первую очередь найдём, для этого нужно будет просто умножить её саму на себя.

После по формуле подставляем числовые значения.

Обратная матрица

Обратная матрица схожа с алгоритмом нахождения обратных чисел. К примеру, если умножить матричную таблицу на обратную матрицу, то в итоге мы получаем A*A(-1)=E. Но чтобы перейти уже к нахождению обратной матрицы, нам придётся найти её определитель. Мы рассмотрим самый простой способ – алгебраических дополнений.

Пример 1

Задание

В пример возьмём квадратную матрицу, она находиться с помощью следующей формулы:

, где

-транспортированные матрицы;|А| – определитель.

Рассмотрим самый простейший пример, где размер таблицы  2*2.

Найти обратную матрицу

Решение

Для начала находим определитель матрицы.

Если ответ равен нулю, то обратной матрицы нет! Так как наш ответ равен -2, то всё в порядке. Следующим действием нам нужно будет рассчитать матрицу миронов. Таблица элементов при этом не изменяется. Где прописан нужным нам элемент, нужно вычеркнуть строчку или столбец, оставшееся число и будет являться мироном.

Подставляем числа, возвращаясь к матрица, которая указана выше.

Всегда начинаем с левого верхнего угла и делаем следующее:

← линиями показано, что нужно и как зачеркнуть.

Как итог, у нас остаётся число 4

Теперь мы переходим к нахождению алгебраических дополнений.

Первым делом нужно поменять знаки у двух чисел в мироне.

  ← подчёркнуты те числа, у которых мы будем менять знаки.

, вот что у нас получилось.

И наконец-то мы переходим к завершающему этапу, к нахождению транспортированной матрице.

, вспоминаем формулу нахождения, и подставляем числовые значения

В завершении желательно проверить правильно ли мы нашли числовую таблицу. Это делать не обязательно, но рекомендуется, чтобы удостовериться в том, то ответ верный.

Пример 2

Задание

Найдите матрицу А.

Решение

Начинаем с определения матрицы.

Дело осталось за малым – осталось начти алгебраическое дополнение матрицы А:

Не забываем записать союзную матрицу:

И уже из неё находим обратную матрицу:

Получаем ответ

Источник: https://NauchnieStati.ru/spravka/primery-resheniya-matricz-s-otvetami/

Делаем просто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: